填空题(2022年全国乙·理2022年全国乙·文

从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.

答案解析

0.3

【解析】

从5名同学中随机选3名的方法数为C53=10

甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=3/10.

讨论

在信道内传输0,1信号,信号的传输相互独立,发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送 1次,三次传输是指每个信号重复发送3次,收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).

甲、乙、丙三位同学进行羽毛球比赛, 约定赛制如下:累计负两场者被淘汰; 比赛前抽签决定首先比赛的两人, 另一人轮空; 每场比赛的胜者与轮空者进行下一场比赛, 负者下一场轮空, 直至有一人被淘汰; 当一人被淘汰后, 剩余的两人继续比赛, 直至其中一人被淘汰, 另一人最终获胜, 比赛结束.经抽签, 甲、乙首先比赛, 丙轮空. 设每场比赛双方获胜的概率都为 1/2.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.

在新冠肺炎疫情防控期间, 某超市开通网上销售业务, 每天能完成 1200 份订单的配货, 由于订单量大幅增 加, 导致订单积压, 为解决困难, 许多志愿者踊跃报名参加配货工作. 已知该超市某日积压 500 份订单未配货, 预计第二天新订单是 1600 份的概率为 0.05. 志愿者每人每天能完成 50 份订单的配货, 为使第二天积压订单及当日订 单配货的概率不小于 0.95, 则至少需要志愿者【 】

某校为举办甲、乙两项不同活动, 分别设计了相应的活动方案: 方案一、方案二. 为了解该校学生对活动方案是否支持, 对学生进行简单随机抽样, 获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II) 从该校全体男生中随机抽取 2 人, 全体女生中随机抽取 1 人, 估计这 3 人中恰有 2 人支持方案一的概率;(III) 将该校学生支持方案二的概率估计值记为 p0. 假设该校一年级有 500 名男生和 300 名女生, 除一年级外其他年级学生支持方案二的概率估计值记为 p1. 试比较 p0 与 p1 的大小. (结论不要求证明)

将一颗质地均匀的正方体骰子先后抛掷 2 次, 观察向上的点数, 则点数和为 5 的概率是______.

某厂生产电子元件,其产品的次品率为5%,现从一批产品中任意地连续取出2件,其中次数品数ξ的概率分布是ξ 0 1 2p

有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2和3.现任取出3面,它们的颜色与号码均不相同的概率是________.

如图,用A,B,C三类不同的元件连接成两个系统N1 N2.当元件A,B,C都正常工作时,系统N1正常工作; 当元件A正常工作且元件B,C至少有一个正常工作; 时,系统N2正常工作.已知元件A,B,C正常工作的概率依次为0.80,0.90,0.90分别求系统N1 N2正常工作的概率P1 P2.

有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则【 】

某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图: 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);(2)设函数f(c)=p(c)+q(c),当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值。

从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为【 】

从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)= ________(结果用简分数表示).

从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.

甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表: 准点班次数 未准点班次数A 240 20B 210 30(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:K2=n(ad-bc)2/((a+b)(c+d)(a+c)(b+d)),P(K2⩾k) 0.100 0.050 0.010k 2.706 3.841 6.635

甲乙各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分.然后各自弃置此轮所选的卡片(弃置的卡片在此后的伦次中不能使用),则四轮比赛后,甲的总得分不小于乙的概率为______.

已知甲、乙两球落入盒子的概率分别为 1/2和 1/3. 假定两球是否落入盒子互不影响, 则甲、乙两球都落入盒子的概率为______; 甲、乙两球至少有一个落入盒子的概率为______.

甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个.甲、乙二人依次各抽一题.(I)甲抽到选择题、乙抽到判断题的概率是多少?(II)甲、乙二人中至少有一个人抽到选择题的概率是多少?

将3个1和2个0随机排成一行,则2个0不相邻的概率为【 】

已知花博会有四个不同的场馆A、B、C、D,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为__________.

从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为【 】

某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由。

已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)= ____________.

设O为正方形 ABCD 的中心, 在 O,A,B,C,D 中任取 3 点, 则取到的 3 点共线的概率为【 】

在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于7/4的概率为【 】

在区间(0,1/2]随机取1个数,则取到的数小于1/3的概率为【 】

甲、乙两人在毎次猜谜语活动中各猜—个谜语,若一方猜对且另一方猜错,则猜对一方获胜,否则本次平局。已知每次活动中,甲乙猜对的概率分别为5/6和3/5,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为__________;3次活动中,甲至少获胜2次的概率为__________.

袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回一个白球,则第4次恰好取完所有红球的概率为________.

一颗质地均匀的正方体骰子,六个面上分别标有点数1,2,3,4,5,6.随机抛掷该骰子三次(各次抛掷结果相互独立),所得的点数依次为a1,a2,a3,则事件|a1-a2 |+|a2-a3 |+|a3-a1 |=6发生的概率为__________.

某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜 概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则【 】

为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.时段 价格变化第1天到第20天 - + + 0 - - - + + 0 + 0 - - + - + 0 0 +第21天到第40天 0 + + 0 - - - + + 0 + 0 + - - - + 0 - +用频率估计概率.(1)试估计该农产品价格“上涨”的概率;(2)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概;(3)假设该农产品每天的价格变化只受前一天价格变化的影响,判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大(结论不要求证明).