一颗质地均匀的正方体骰子,六个面上分别标有点数1,2,3,4,5,6.随机抛掷该骰子三次(各次抛掷结果相互独立),所得的点数依次为a1,a2,a3,则事件|a1-a2 |+|a2-a3 |+|a3-a1 |=6发生的概率为__________.
一颗质地均匀的正方体骰子,六个面上分别标有点数1,2,3,4,5,6.随机抛掷该骰子三次(各次抛掷结果相互独立),所得的点数依次为a1,a2,a3,则事件|a1-a2 |+|a2-a3 |+|a3-a1 |=6发生的概率为__________.
1/4
【解析】
解答过程见word版
在△ABC中,AB=1,AC=2,B-C=2π/3,则△ABC的面积为__________.
设函数f(x)=cosx+log2x (x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)=________.
设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)∙x+f(2)/x-1,则f(x)在(0,+∞)上的最小值为__________.
若集合A={1,2,m},其中m为实数.令B={a²|a∈A},C=A∪B.若C的所有元素之和为6,则C的所有元素之积为________.
等差数列{an}满足a2021=a20+a21=1,则a1的值为__________.
求所有不超过100的正整数k,使得存在整数n,满足:k|(3n6+26n4+33n2+1)
已知实数a1,a2,⋯,an>0,求证:ai-1/ai ≥(ai-1+ai+1)/(ai+ai+1+1)其中a0=an,an+1=an.
52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为______;已知第一次抽到的是A,则第二次抽到A的概率为______.
已知甲、乙两球落入盒子的概率分别为 1/2和 1/3. 假定两球是否落入盒子互不影响, 则甲、乙两球都落入盒子的概率为______; 甲、乙两球至少有一个落入盒子的概率为______.
从一副混合后的扑克牌(52张)中,随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得黑桃”,则概率P(A∪B)= ________(结果用简分数表示).
已知花博会有四个不同的场馆A、B、C、D,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个馆相同的概率为__________.
在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于7/4的概率为【 】
在区间(0,1/2]随机取1个数,则取到的数小于1/3的概率为【 】
袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回一个白球,则第4次恰好取完所有红球的概率为________.
已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)= ____________.
某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜 概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则【 】
为了检则学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检则,则每一类都被抽到的概率为________.