在△ABC中,AB=1,AC=2,B-C=2π/3,则△ABC的面积为__________.
设函数f(x)=cosx+log2x (x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)=________.
设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)∙x+f(2)/x-1,则f(x)在(0,+∞)上的最小值为__________.
若集合A={1,2,m},其中m为实数.令B={a²|a∈A},C=A∪B.若C的所有元素之和为6,则C的所有元素之积为________.
等差数列{an}满足a2021=a20+a21=1,则a1的值为__________.
求所有不超过100的正整数k,使得存在整数n,满足:k|(3n6+26n4+33n2+1)
已知实数a1,a2,⋯,an>0,求证:ai-1/ai ≥(ai-1+ai+1)/(ai+ai+1+1)其中a0=an,an+1=an.
已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.
记△ABC的内角A,B,C的对边分别为a,b,c,已知b2=ac,点D在边AC上,BDsin∠ABC=asinC.(1)证明:BD=b;(2)若AD=2DC,求cos∠ABC.
在△ABC中,已知B=120°,AC=,AB=2,则BC=【 】
记△ABC的内角A,B,C的对边分别为a,b,c,面积为,B=60°,a2+c2=3ac,则b=______.
在△ABC中,已知a=3,b=2c.(1)若A=2π/3,求S△ABC.(2) 若2sinB-sinC=1,求C△ABC.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知sinA:sinB:sinC=2:1:√2,b=√2.(1)求a的值;(2)求cosC的值;(3)求sin(2C-π/6)的值.
已知a,b,c分别表示△ABC的角A,B,C对边的长,求证:a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0.
已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当AC/AB取得最小值时,BD=________.
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.
直线x + y - 2 = 0截圆x2 + y2 = 4得到的劣弧所对的圆心角为【 】
已知椭圆C的焦点分别为F1(-2,0)和F2(2,0),长轴长为6,设直线y=x+2交椭圆C于A,B两点,求线段AB的中点坐标.
过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是【 】
若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率为【 】
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.
设P为双曲线x2/4 - y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是____________.
设F1,F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点.已知P,F1,F2是一个直角三角形的上顶点,且|PF1|>|PF2|,求|PF1|/|PF2| 的值.
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上。若PF1⊥PF2,则点P到x轴的距离为______.