记△ABC的内角A,B,C的对边分别为a,b,c,面积为,B=60°,a2+c2=3ac,则b=______.
已知向量=(1,3),=(3,4),若(-λ)⊥,则λ=________.
已知双曲线x2/m - y2=1(m>0)的一条渐近线为 x+my=0,则C的焦距为________.
设B是椭圆C:x2/a2 +y2/b2 =1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率取值范围是【 】
设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则【 】
在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于7/4的概率为【 】
把函数y=f(x)图像上所有点的横坐标缩短到原来的1/2倍,纵坐标不变,再把所得曲线向右平移π/3个单位长度,得到函数sin(x-π/4)的图像,则f(x)=【 】
将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有【 】
当△ABC 中A为钟角时,余弦定律为 a² =b² +c² +2bccosA.
设D为△ABC一边BC之中点,证AD²=1/4(2AB²+2AC²-BC²)
有等高的两竿,自其底连线上一点望之,较近之竿的仰角为 60°,若自该点向此线之垂直方向行 80 尺而测之,得二竿之仰角为 45°,30°,试求二竿之高及其间的距离.
试证三角形∠A之内角平分线之长为2bc∙cos(A/2)/(b+c).
有三角形底边长是 2a,求顶点的轨迹,使其它二边的相乘积为 a².
堤上有塔高 50 尺,自堤下地面某点测得塔顶之仰角为 75°,塔底之仰角为 45°,求堤高.
△ABC 之底边 BC 的位置及长均为已知,自 B 至 AC 边之中线长亦为已知,求 A 点之轨迹.
已知在△ABC中,A+B=3C,2 sin(A-C)=sinB.(1)求sinA;(2)设AB=5,求AB边上的高.
已知在△ABC中,A+B=3C,2 sin(A-C)=sinB.(1)求sinA;(2)设AB=5,求AB边上的高.
记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为√3,D为BC的中点,且AD=1.(1)若∠ADC=π/3,求tanB;(2)若b²+c²=8,求b,c.
过一点 (2,1)的直线与直线 2x - 3y + 12 = 0 成45°角,求直线方程.
若三直线aix+biy+ci=0(i=1,2,3)相交于一点,则=0.试证之.
在定角 XOY 的二边上各取二点 P、Q,使 OP +OQ = a. 试求 PQ 的中点的轨迹.
试证方程 x² + 6xy + 9y² + 4x + 12y -5 = 0 之轨迹为二平行直线.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
已知一点 A(-1,-2),求至椭圆 x² + 5y² = 5 的切线方程.
在△ABC中,(a+c)(sinA-sinC)=b(sinA-sinB),则∠C=【 】
已知在△ABC中,a=2b,cosB=2√2/3,则sin(A-B)/2+sinC/2=__________.
在△ABC中,AB=1,AC=2,B-C=2π/3,则△ABC的面积为__________.
在平面直角坐标系中,函数y=(x+1)/(|x|+1)的图像上有三个不同的点位于直线l上,且这三个点的横坐标之和为0.求l的斜率的取值范围.