填空题(2021年全国乙·理

已知双曲线x2/m - y2=1(m>0)的一条渐近线为 x+my=0,则C的焦距为________.

答案解析

4

讨论

在 △ABC 中, 角 A, B, C 所对的边分别为 a, b, c. 已知 a = 2√2, b = 5, c = .(I) 求角 C 的大小;(II) 求 sin A 的值;(III) 求 sin⁡(2A+π/4) 的值.

在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.

在 △ABC 中, 角 A、 B、 C 的对边分别为 a、 b、 c. 已知 a = 3, c = , B = 45º. (1) 求 sinC 的值;(2) 在边 BC 上取一点 D, 使得 cos∠ADC =-4/5, 求 tan∠DAC 的值.

外国船只,除特许者外,不得进人离我海岸线 d海里的区域.设 A 及 B 是我们的观测站 , A 及 B 间的距离为s海里,海岸线是过 A 、B 的直线. 一外国船只在P点.在 A 站测得∠BAP=α ,同时在 B 站测得∠ABP=β,问及满足什么简单的三角函数值不等式,就应当向此未经特许的外国船只发出警告,命令退出我海域?

设等腰△OAB的顶角为 2θ,高为h.(1) 在△OAB内有一动点P,到三边OA,OB,AB的距离分别为|PD|,|PF|,|PE|,并且满足关系式|PD|∙|PF|=|PE|2,求P点的轨迹.(2) 在上述轨迹中定出点P的坐标,使得|PD|+|PE|=|PF|.

用解析几何方法证明三角形的三条高线交于一点.

某人要作一个三角形,要求它的三条高的长度分别是1/13 ,1/11 ,1/5 ,则此人将【 】

已知两点P(-2,2),Q(2,2)以及一条直线l:y=x.设长为的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.(要求把结果写成普通方程)

设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么【 】

自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.