问答题(1947年交通大学

在双曲线x2/a2 -y2/b2 =1上意一点 P作切线交此双曲线之两渐近线(asymptotes)在于Q及 R,若 O 为此双曲线之中心,试求 △OQR 外接圆心之轨迹.

答案解析

暂无答案

讨论

已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

已知双曲线y2+x2/m=1的渐近线方程为y=±√3/3 x,则m=__________.

已知双曲线x2/a2 -y2/b2 =1(a>0,b>0)的左焦点为F,过F且斜率为b/4a的直线交双曲线于点A(x1,y1 ),交双曲线的渐近线于点B(x2,y2 )且x1<0<x2.若|FB|=3|FA|,则双曲线的离心率是_________.

双曲线x2/9-y2=1的实轴长为________.

Reduce the hyperbola 4x² - 9y² - 24x + 36y - 36 = 0 to standard form.

双曲线x²/100-y²/64=1的焦点为S,S1;,其中S位于x正半轴上. P为双曲线在第一象限上的一点,记∠SPS1=α,α<π/2. 过点S且斜率与双曲线在P点切线相同的直线,与直线S1 P交于P1点,记P到直线SP1的距离为δ,β=S1 P.则不超过βδ/9 sin⁡α/2的最大整数为______.

有圆锥曲线方程式为 5x² -4y² - 20x - 24y + 4= 0,试求其中心、焦点、渐近线、准线.

试证双曲线之两渐近线及任一切线所成之三角形之面积等于一常数.

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

设双曲线 C : x2/a2 -y2/b2 =1 (a > 0, b > 0) 的左、右焦点分别为 F1, F2, 离心率为. P是 C 上一点, 且 F1P⊥F2P . 若 △PF1F2 的面积为 4, 则 a =【 】

已知双曲线 C :x2/6-y2/3=1, 则 C 的右焦点的坐标为_______; C 的焦点到其渐近线的距离是 ______.

设双曲线 C 的方程为 x2/a2 -y2/b2 =1 (a > 0, b > 0), 过抛物线 y2 = 4x 的焦点和点 (0, b) 的直线为 l. 若 C 的一条渐近线与 l 平行, 另一条渐近线与 l 垂直, 则双曲线 C 的方程为【 】.

双曲线C1: x2/4-y2/b2 =1 与圆 C2 : x2 + y2 = 4 + b2 (b > 0) 交于点 A(xA, yA), 曲线 Γ 满足 x > |xA| 并在曲线 C1、C2 上.(1) 若 xA=, 求 b 的值;(2) b =, 圆 C2 与 x 轴交于点 F1, F2, P 在第一象限, |PF1| = 8, 求 ∠F1PF2;(3) 点 D(0,b2/2+2), 过该点的直线斜率为 -b/2 的直线 l 和 Γ 只有两个交点, 记作 M, N, 用 b 表示 ∙,并求其取值范围.

在平面直角坐标系 xOy 中, 若双曲线 x2/a2 -y2/5=1 (a > 0) 的一条渐近线方程为 y=/2 x , 则该双曲线的 离心率是_______.

双曲线3x2 - y2 = 3的渐近线方程是【 】

如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段AC 所成的比为λ,双曲线过C,D,E三点,且以A,B为焦点.当2/3≤λ≤3/4 时,求双曲线离心率e的取值范围.

双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.

在平面直角坐标系xOy中,已知点F1(-,0),F2 (,0),点M满足:|MF1|-|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=1/2上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|∙|TB|=|TP|∙|TQ|,求直线AB的斜率与直线PQ的斜率之和.

已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为【 】