点 (0, −1) 到直线 y = k(x + 1) 距离的最大值为【 】
A、1
B、
C、
D、2
设 O 为坐标原点, 直线 x = 2 与抛物线 C : y2 = 2px (p > 0) 交于 D, E 两点, 若 OD ⊥ OE, 则 C 的焦点坐标为【 】
在平面内, A, B 是两个定点, C 是动点. •= 1, 则点 C 的轨迹为【 】
已知 sinθ + sin(θ + π/3) = 1, 则 sin(θ + π/6) =【 】
设一组样本数据 x1, x2, · · · , xn 的方差为 0.01, 则数据 10x1, 10x2, · · · , 10xn 的方差为【 】
已知集合 A = {1, 2, 3, 5, 7, 11}, B = {x | 3 < x < 15}, 则 A ∩ B 中元素的个数为【 】
设坐标原点为O,抛物线y2=2x与过焦点的直线交于A,B两点,则∙=【 】
已知O为坐标原点,点P1(cosα,sinα),P2(cosβ,-sinβ),P3(cos(α+β),sin(α+β) ),A(1,0),则【 】
已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.(1)求p;(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.
已知圆C:x2+y2=4,直线L:y=kx+m,则当k的值发生变化时,直线被圆C所截的弦长的最小值为1,则m的取值为【 】
若斜率为√3的直线与y轴交于点A,与圆x2+(y-1)2=1相切与点B,则|AB|=_______.
在边长为1的等边三角形ABC中,D为线段BC上的动点,DE⊥AB且交AB于点E,DF//AB交AC于点F,则|2+|的值为__________;(+)∙最小值为__________.
已知平面向量,,(≠0)满足| |=1,| |=2,∙=0,(- )∙=0.记向量在,方向上的投影分别为x,y,-在方向的投影为z,则x2+y2+z2的最小值为________.