椭圆x2/a2 +y2/b2 =1(a>b>0),焦点F1 (-c,0),F2 (c,0)(c>0),若过F1的直线和圆(x-1/2)2+y2=c2相切,与椭圆在第一象限交于点P,且PF2⊥x轴,则该直线的斜率是______,椭圆的离心率是______.
椭圆x2/a2 +y2/b2 =1(a>b>0),焦点F1 (-c,0),F2 (c,0)(c>0),若过F1的直线和圆(x-1/2)2+y2=c2相切,与椭圆在第一象限交于点P,且PF2⊥x轴,则该直线的斜率是______,椭圆的离心率是______.
(2√5)/5 √5/5
已知直线 x − y + 8 = 0 和圆 x2 + y2 = r2 (r > 0) 相交于 A, B 两点. 若 |AB| = 6, 则 r 的值为______.
在平面直角坐标系 xOy 中, 已知 P(/2,0), A、 B 是圆 C : x2+(y-1/2)2=36上的两个动点, 满足 P A = P B, 则 △P AB 面积的最大值是______.
如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么【 】。
在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且c=10, cosA/cosB=b/a=4/3, P为△ABC的内切圆上的动点.求点P到顶点A,B,C的距离的平方和的最大值与最小值.
如果实数x,y满足等式(x-2)2+y2=3,那么y/x的最大值是【 】
圆x2 + 2x + y2 + 4y - 3 = 0上到直线x + y + 1 = 0的距离为的点共有【 】个。
圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是【 】
一动圆与两圆: x2 + y2 = 1和x2 + y2 - 8x + 12 = 0 都外切,则动圆圆心的轨迹为【 】
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.
如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a=【 】
过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是【 】
设A,B是x轴上的两点,点P的横坐标为2且|PA|=|PB|.若直线PA的方程为x-y+1=0,则直线PB的方程是【 】
曲线y=(2x-1)/(x+2)在点(-1,-3)处的切线方程为__________.
过一点 (2,1)的直线与直线 2x - 3y + 12 = 0 成45°角,求直线方程.
在定角 XOY 的二边上各取二点 P、Q,使 OP +OQ = a. 试求 PQ 的中点的轨迹.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
在平面直角坐标系中,函数y=(x+1)/(|x|+1)的图像上有三个不同的点位于直线l上,且这三个点的横坐标之和为0.求l的斜率的取值范围.