设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
一圆的中心在直线 5x-3y-7=0 上,且经过两圆之交点,求此圆的方程式.
求与 x =0,y = 0,3x +4y - 6 = 0 三线相切之圆的方程
过点(0,-2)与圆x²+y²-4x-1=0相切的两条直线的夹角为α,则sinα=【 】
写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程________________.
设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.
已知平面直角坐标系中的点集Q={(x,y)|(x-k)2+(y-k2)2=4|k,k∈z}.①存在直线l与Q没有公共点,且Q中存在两点在l的两侧;②存在直线l经过Q中的无数个点则【 】
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被C截得的弦长为2√3时,a=【 】
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
已知一点 A(-1,-2),求至椭圆 x² + 5y² = 5 的切线方程.
点 (0, −1) 到直线 y = k(x + 1) 距离的最大值为【 】
若直线 l 与曲线 y = 和圆 x2 + y2 = 1/5 相切, 则 l 的方程为【 】
已知两点P(-2,2),Q(2,2)以及一条直线l:y=x.设长为的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.(要求把结果写成普通方程)
自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.
过点(1,2)且与直线2x + y - 1 = 0平行的直线方程是__________.