一圆与二坐标轴及直线 x=a相切,求其方程.
过一定点作一直线 AB 平行于一定平面 P,且与另一定平面 Q 所成之角等于定角 θ.
于任意 △ABC 之各边上向外作等边三角形 BCD,CAE 及 ABF,试证此诸等边三角形的外接圆共点.若此点为 P,则 PA+PB + PC =AD =BE =CF.
设二曲线c1及c2的方程依次为x²+2xy-3y²+2x+2y+2=0及x²+y²-4=0,求1) 过 c1 及 c2的交点的抛物线;2) 过 c1 及 c2 的交点的二次曲线之心之轨迹.
设 F 是抛物线的焦点,在抛物线上任取一点 P 与焦点连接,由 P 作 PQ平于主轴,试证 P 点的法线平分 ∠FPQ.
设 A,B 为 x 的两个有理整式,请用辗转相除法说明并证明何种情况为互质,何种情况下有公因式.有公因式时,说明求最高公因式之方法并证明之.
设圆 x² +y² = a²交横轴于 A、B 二点,自圆上任意一点 Q 作切线,自 A 作直线垂直于切线与 BQ 交于 P,求 P之轨迹.
求原点平移至(2,-5)后,曲线7x²+8y²-28x+80y+172=0之方程式.
AB 为一圆之一条固定弦,R 是圆上之一运动的点,求三角形 ABR 的垂心的轨迹.
一圆的中心在直线 5x-3y-7=0 上,且经过两圆之交点,求此圆的方程式.
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
已知二圆C1:x²+y²-6x=0,C2:x²+y²-4=0,求通过C1,C2之两交点及另一点(2,-2)之圆的方程式.
求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.
一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.