求与 x =0,y = 0,3x +4y - 6 = 0 三线相切之圆的方程
试证方程 x² + 6xy + 9y² + 4x + 12y -5 = 0 之轨迹为二平行直线.
一圆经过两点(2,-3),(-4,-1),而其中心在直线3y+x-18=0上,求圆的方程.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
已知一点 A(-1,-2),求至椭圆 x² + 5y² = 5 的切线方程.
△ABC 中, sin2A − sin2B − sin2C = sinBsinC.(1) 求 A;(2) 若 BC = 3, 求 △ABC 周长的最大值.
在 △ABC 中, cosC =2/3, AC = 4, BC = 3, 则 tanB =【 】
已知向量 a, b 满足 |a| = 5, |b| = 6, a · b = −6, 则 cos⟨a, a + b⟩ =【 】
如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,那么必有【 】
设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么【 】
如果实数x,y满足等式(x-2)2+y2=3,那么y/x的最大值是【 】
圆x2 + 2x + y2 + 4y - 3 = 0上到直线x + y + 1 = 0的距离为的点共有【 】个。
圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是【 】
一动圆与两圆: x2 + y2 = 1和x2 + y2 - 8x + 12 = 0 都外切,则动圆圆心的轨迹为【 】
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.