梯形之四边长均为已知,求作此梯形.
设O为圆心,AB为弦,延长AB至C,令BC等于圆半径,再引CO交圆于D,求证:∠BOC为∠DOA的1/3.
解反三角方程sin{2arccos(ctg(2arctgx))}=0.
设A+B+C=π,证明sinA+sinB+sinC=4 cos(A/2)cos(B/2)cos(C/2).
过原点作直线垂直于双曲线 x²-y² = a² 上一切线,求垂足之轨迹之极坐标方程.
有一圆锥曲线过(0,-2),(-2,0),(2,-8) 三点,且对称于原点,试求其方程,并判别其性质.
甲能解某题之几率为b/a,乙能解某题之几率为d/c,设甲与乙独自解之,试用两种方法,求某题能解之几率.
设a,b,c为方程x³+2x²+3x+4=0之根,求以a(1/b+1/c),b(1/c+1/a),c(1/a+1/b)为根之方程.
PQRS为平面四边形,QR=1,∠PQR= ∠QRS= 70°,∠PQS=15°,∠PRS= 40°.若∠RPS=θ.PQ=α,PS=β,则4αβsinθ属于下列哪个区间【 】
设ABCD为一平行四边形,AC为对角线,由B作任意直线各交AC、CD及AD于F、G及E,求证EF·FG=BF².
设有一三角形,其底为 7 cm,高为 5 cm,用圆规及尺作一正方形,其面积与此相等者.
证从平行四边形之一顶点作线至对边之中点,三等分四边形之对角线.
Transform the difference of two squares into a rectangle, the ratio of two sides being 2 : 3.
一定点 D在 AB 及 AC 两直线间,求作过 D至 AB、AC 两线之直线,并 D为所作线之三等分点之一点,并证有二此等线.
试证圆内之等弦距圆心均等.又证圆内之两等弦相交割其所割相当之部分各相等.
何谓圆:___________________________.
设G为半径为R的圆,G1,G2,⋯,Gn为半径为r的圆,已知G1,G2,⋯,Gn均外切于G,对于i=1,2,⋯,n-1,Gi与Gi+1外切,且Gn与G1外切,则下列叙述正确的有【 】
从半圆之直径 AB 两端各引此半圆弦 AC,BD交于 E,求证: AC·AE+BD·BE = AB².