问答题(1949年唐山工程学院

有一圆锥曲线过(0,-2),(-2,0),(2,-8) 三点,且对称于原点,试求其方程,并判别其性质.

答案解析

暂无答案

讨论

已知椭圆 C : x2/a2 +y2/b2 =1过点 A(−2, −1), 且 a = 2b.(I) 求椭圆 C 的方程;(II) 过点 B(−4, 0) 的直线 l 交椭圆 C 于点 M, N, 直线 MA, NA 分别交直线 x = −4 于点 P, Q. 求 |PB|/|BQ|的值.

已知椭圆 x2/a2 +y2/b2 =1 (a > b > 0) 的一个顶点为 A(0, −3), 右焦点为 F , 且 |OA| = |OF|, 其中 O 为原点.(I) 求椭圆的方程;(II) 已知点 C 满足 3=, 点 B 在椭圆上 (B 异于椭圆的顶点), 直线 AB 与以 C 为圆心的圆相切于点P , 且 P 为线段 AB 的中点. 求直线 AB 的方程.

已知椭圆 x2/4+y2/3=1 , 点 P 在第二象限, F 是其右焦点, PF 交椭圆于 Q, Q 关于 x 轴对称点 Q′, 且PF ⊥ FQ′, 直线 PF 的方程是_______________.

已知点 O(0, 0), A(−2, 0), B(2, 0). 设点 P 满足 |PA| − |PB| = 2, 且 P 为函数 y=3 图像上的点,则 |OP| =【 】

在平面直角坐标系 xOy 中, 已知椭圆 E : x2/4+y2/3=1 的左、右焦点分别为 F1、F2, 点 A 在椭圆 E 上且在第一象限内, AF2⊥F1F2, 直线 AF1 与椭圆 E 相交于另一点 B.(1) 求 △AF1F2 的周长;(2) 在 x 轴上任取一点 P , 直线 AP 与椭圆 E 的右准线相交于点 Q, 求 ∙的最小值;(3) 设点 M 在椭圆 E 上, 记 △OAB 与 △MAB 的面积分别为 S1, S2, 若 S2 = 3S1, 求点 M 的坐标.

如图,已知椭圆长轴|A1A2 |=6,焦距|F1F2 |=4,过椭圆焦点F1作一直线,交椭圆于两点M,N,设∠F2F1M=α(0≤α<π),当α取什么值时,|MN|等于椭圆短轴的长?

求经过定点M(1,2),以y轴为准线,离心率为1/2的椭圆的左顶点的轨迹方程.

已知椭圆Γ的方程x2/a2 +y2/b2 =1(a>b>0),点P的坐标为 (-a,b).(1) 若直角坐标平面上的点 M,A(0,-b),B(a,0)满足=1/2(+),求点M的坐标;(2) 设直线l1:y=k1 x+p交椭圆Γ于C,D两点,交直线l2:y=k2 x 交于点E,若k1•k2=-b2/a2 ,证明:E为CD的中点;(3) 对于椭圆Γ上的点Q(acos⁡θ,bsin θ)(0<θ<π),如果椭圆Γ上存在不同的两点P1, P2,使得+=,写出求作点P1,P2的步骤,并求出使P1, P2存在的θ的取值范围.

设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】

如图,直线l的方程是x=-p/2,其中p>0;椭圆的中心为D(2+p/2,0),焦点在x轴上,长半轴长为2,短半轴长为1,它的一个顶点这A(p/2,0).问:p在哪个范围取值时,椭圆上有四个不同的点,它们中每一个点到点A的距离等于该点到直线l的距离?

一圆的中心在直线 5x-3y-7=0 上,且经过两圆之交点,求此圆的方程式.

设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.

已知二圆C1:x²+y²-6x=0,C2:x²+y²-4=0,求通过C1,C2之两交点及另一点(2,-2)之圆的方程式.

A tower of 20.7 feet high stands at the edge of the water on a bank of a river. From a point directly opposite to the tower on the other side of the river above the water, the angle of elevation of the top of the tower is 27°17' and the angle of depression of the image of its top in the water is 38°12'. Find the width of the river.

Two towers, A and B, on the shore of a lake can be observed from only one point C on the opposite shore. The lines joining the bases of two towers subtend anangle of 63°42' at C. The heights of the towers are 132 feet and 89 feet, and the angle of elevation of the tops as seen from C are 8°13' and 7°21' respectively.Find the distance AB.

Find the distance from the point (-1, -4) to the straight line which is drawn through (-2,6) and the perpendicular to the line joining (3,6) and (-5,-1).

某人在高处望见正东海面上一船首,其俯角为 30°,当船向正南行 a 里后,求得船首俯角为 15°,问此人之视点高出海面若干?

求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.

一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.

若 kxy - 8x + 9y - 12 = 0 表示二条直线,求 k 值及此二直线所夹的角.