问答题(1983年全国统考

如图,已知椭圆长轴|A1A2 |=6,焦距|F1F2 |=4,过椭圆焦点F1作一直线,交椭圆于两点M,N,设∠F2F1M=α(0≤α<π),当α取什么值时,|MN|等于椭圆短轴的长?

答案解析

以椭圆焦点F1为极点,以F1为起点并过F2的射线为极轴建立极坐标系. 由已知条件可知椭圆长半轴a=3,半焦距c=,短半轴b=1,离心率e=2/3,中心到准线距离=9/4,焦点到准线距离p=/4.椭圆的极坐标方程为ρ== ∴...

查看完整答案

讨论

设有等边双曲线 (equilateral hyperbola) xy =1.今于其上取三点 A,B,C 联成三角形,而 A,B,C 之横标 (abscissa) 依次为 a,b,c.(1).求证过 △ABC 三顶点作向对边之垂线会于一点(2).求出三垂线之交点坐标,并证明此交点在双曲线上.

Show that the tangent to a hyperbola makes equal angles with the focal radii drawn to the point of tangency.

求圆锥曲线 2x²-8xy - 4y² - 4y +1=0 之焦点及准线.

双曲线上一点与其两渐近线之阿离如何?并证此两距离相乘之积为常数.

过原点作直线垂直于双曲线 x²-y² = a² 上一切线,求垂足之轨迹之极坐标方程.

已知双曲线C:x²/a² -y²/b² =1(a>0,b>0)的左、右焦点分别为F1,F2.点A在C上,点B在y轴上,(F1 A) ➝⊥(F1 B) ➝,(F2 A) ➝=-2/3 (F2 B) ➝,则C的离心率为________.

已知双曲线C的焦点为(-2,0)和(2,0),离心率为√2,则C的方程为____________.

设双曲线x²/a² -y²/b² =1(a>0,b>0)的左右焦点分别为F1,F2,过F2作平等于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为______.

已知双曲线C的中心坐标为原点,左焦点为(-2√5,0),离心率为√5.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P,证明:点P在定直线上.

设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】

若直线 l 与曲线 y = 和圆 x2 + y2 = 1/5 相切, 则 l 的方程为【 】

已知 P 是边长为 2 的正六边形 ABCDEF 内的一点, 则• 的取值范围是【 】

在 ① ac =, ② csin A = 3, ③ c = b 这三个条件中任选一个, 补充在下面问题中, 若问题中的三角形存在, 求 c 的值; 若问题中的三角形不存在, 说明理由.问题: 是否存在 △ABC, 它的内角 A, B, C 的对边分别为 a, b, c, 且 sinA = sinB, C = π/6 ,__________?注: 如果选择多个条件分别解答, 按第一个解答计分.

已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .

在 △ABC 中, a + b = 11, 再从条件 ①、条件 ② 这两个条件中选择一个作为已知, 求:(I) a 的值;(II) sin C 和 △ABC 的面积.条件 ①: c = 7, cos A = -1/7;条件 ②: cos A = 1/8, cos B = 9/16.注: 如果选择条件 ① 和条件 ② 分别解答, 按第一个解答计分.

如图, 在四边形 ABCD 中, ∠B = 60º, AB = 3, BC = 6, 且 =λ, ·= -3/2, 则实数 λ 的值为_____, 若 M, N 是线段 BC 上的动点, 且 || = 1, 则· 的最小值为______.

在 △ABC 中, 角 A, B, C 所对的边分别为 a, b, c. 已知 a = 2√2, b = 5, c = .(I) 求角 C 的大小;(II) 求 sin A 的值;(III) 求 sin⁡(2A+π/4) 的值.

设 k ∈ N∗, 已知平面向量 a1, a2, b1, b2, · · · , bk 两两不同, |a1 − a2| = 1. 对于任意 i = 1, 2, j = 1, 2, 3,· · · , k, |ai − bj| ∈ {1, 2}, 则 k 的最大值是_______________.

已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.

在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.