已知双曲线C:x²/a² -y²/b² =1(a>0,b>0)的左、右焦点分别为F1,F2.点A在C上,点B在y轴上,(F1 A) ➝⊥(F1 B) ➝,(F2 A) ➝=-2/3 (F2 B) ➝,则C的离心率为________.
已知单位向量 a, b 的夹角为 60°, 则下列向量中, 与 b 垂直的是【 】
在平面内, A, B 是两个定点, C 是动点. •= 1, 则点 C 的轨迹为【 】
已知 P 是边长为 2 的正六边形 ABCDEF 内的一点, 则• 的取值范围是【 】
已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .
已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.
设点P在单位圆的内接正八边形A1A2…A8的边A1A2上,则(PA1)2+(PA2)2+⋯+(PA8)2的取值范围是_______.
双曲线2mx2 - my2 = 2的一条准线是y=1,则m=______.
双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P,Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.
椭圆9x2 + 16y2 = 144的离心率为______.
焦点为F1(-2,0)和F2(6,0),离心率为2的双曲线的方程是____________.
已知椭圆x2/a2 +y2/b2 =1(a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明:-(a2 - b2)/a < x0 < (a2 - b2)/a.
如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为【 】
如图,在面积为1的△PMN中,tanM=1/2,tanN=-2.建立 适当的坐标系,求出以M,N为焦点且过点P的椭圆方程.
双曲线之切线与渐近线相交,试证切点移动其所包围之三角形之面积为常数.
Reduce the hyperbola 4x² - 9y² - 24x + 36y - 36 = 0 to standard form.
于双曲线4/3 (x-2)2-(y+1)2=1中,已知其一直径之斜度为1/3,试求此直径及其共轭直径之方程式,若以此二共轭直径为新坐标轴,试求双曲线之新方程式.
有圆锥曲线方程式为 5x² -4y² - 20x - 24y + 4= 0,试求其中心、焦点、渐近线、准线.
试证双曲线之两渐近线及任一切线所成之三角形之面积等于一常数.
在双曲线x2/a2 -y2/b2 =1上意一点 P作切线交此双曲线之两渐近线(asymptotes)在于Q及 R,若 O 为此双曲线之中心,试求 △OQR 外接圆心之轨迹.