证明题(1932年北京大学

双曲线之切线与渐近线相交,试证切点移动其所包围之三角形之面积为常数.

答案解析

暂无答案

讨论

英:Find the equation to the normal to hyperbola x2/a2 -y2/b2 =1 at the point (x1,y1) . 汉:求双曲线x2/a2 -y2/b2 =1在点(x1,y1)处的法线方程.

The point of contact of a tangent to an hyperbola is midway between the points in which the tangent meets the asymptotes.

在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,1/2)的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3√3.

已知抛物线C:y²=8x的焦点为F,点M在C上.若M到直线x=-3距离为5,则|MF|=【 】

造型 可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O,且C上的点满足:横坐标大于-2,到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为4,则【 】

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

斜率为 的直线过抛物线 C : y2 = 4x 的焦点, 且与 C 交于 A, B 两点, 则 |AB| =______.

已知椭圆 x2/a2 +y2/b2 =1 (a > b > 0) 的一个顶点为 A(0, −3), 右焦点为 F , 且 |OA| = |OF|, 其中 O 为原点.(I) 求椭圆的方程;(II) 已知点 C 满足 3=, 点 B 在椭圆上 (B 异于椭圆的顶点), 直线 AB 与以 C 为圆心的圆相切于点P , 且 P 为线段 AB 的中点. 求直线 AB 的方程.

已知椭圆 x2/4+y2/3=1 , 点 P 在第二象限, F 是其右焦点, PF 交椭圆于 Q, Q 关于 x 轴对称点 Q′, 且PF ⊥ FQ′, 直线 PF 的方程是_______________.

已知点 O(0, 0), A(−2, 0), B(2, 0). 设点 P 满足 |PA| − |PB| = 2, 且 P 为函数 y=3 图像上的点,则 |OP| =【 】