已知直线l:x-my+1=0与⨀C:(x-1)²+y²=4交于A,B两点,写出满足“△ABC的面积为8/5”的m的一个值______.
在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.
在平面直角坐标系 xOy 中, 已知 P(/2,0), A、 B 是圆 C : x2+(y-1/2)2=36上的两个动点, 满足 P A = P B, 则 △P AB 面积的最大值是______.
如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么【 】。
在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且c=10, cosA/cosB=b/a=4/3, P为△ABC的内切圆上的动点.求点P到顶点A,B,C的距离的平方和的最大值与最小值.
如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,那么必有【 】
设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么【 】
如果实数x,y满足等式(x-2)2+y2=3,那么y/x的最大值是【 】
圆x2 + 2x + y2 + 4y - 3 = 0上到直线x + y + 1 = 0的距离为的点共有【 】个。
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.
直线x + y - 2 = 0截圆x2 + y2 = 4得到的劣弧所对的圆心角为【 】
过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是【 】
已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则【 】
已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.(1)求p;(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.
已知两点P(-2,2),Q(2,2)以及一条直线l:y=x.设长为的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.(要求把结果写成普通方程)
自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.
过点(1,2)且与直线2x + y - 1 = 0平行的直线方程是__________.
如果AC < 0,且BC < 0,那么直线Ax + By + C = 0不通过【 】
如图,若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则【 】
如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a=【 】
过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是【 】
设A,B是x轴上的两点,点P的横坐标为2且|PA|=|PB|.若直线PA的方程为x-y+1=0,则直线PB的方程是【 】