过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是【 】
A、y=x
B、y=-x
C、y=/3 x
D、y=-/3 x
过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是【 】
A、y=x
B、y=-x
C、y=/3 x
D、y=-/3 x
C
在△ABC中,已知a=3,b=2c.(1)若A=2π/3,求S△ABC.(2) 若2sinB-sinC=1,求C△ABC.
已知△ABC,若对任意t∈R,|(BA)→-t(BC)→ |≥|(AC)→|,则△ABC一定为【 】。
A,B,C are the angles of a triangle, prove that tanA+tanB+tanC=tanAtanBtanC.
求二直线y=m1x+c1,y=m2x+c2及y轴所包围之三角形之面积.
于正东正南甲乙二地,测得某山之仰角为 45°及 30°,今甲乙两地之距离为2400 尺,求山高.
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
已知二圆C1:x²+y²-6x=0,C2:x²+y²-4=0,求通过C1,C2之两交点及另一点(2,-2)之圆的方程式.
求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.
一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.
求自原点至圆x²+y²-14x+2y+25=0所作的二切线的交角.
二直线x+y+4=0,x-y=0各与圆x²+y²-2x+4y-4=0相交,且所围成之二弓形面积相等,试证明之.
一圆经过两点(2,-3),(-4,-1),而其中心在直线3y+x-18=0上,求圆的方程.
已知一圆及一直线,求作该圆之切线,使其自切点至该直线间之线段,等于已知长.
设有一三角形ABC:假定A及B两顶为固定不移,其他一C在AC²+BC²=2/5 AB²之条件下运动,则其轨迹为何如?
若 kxy - 8x + 9y - 12 = 0 表示二条直线,求 k 值及此二直线所夹的角.
过一点 (2,1)的直线与直线 2x - 3y + 12 = 0 成45°角,求直线方程.
若三直线aix+biy+ci=0(i=1,2,3)相交于一点,则=0.试证之.
在定角 XOY 的二边上各取二点 P、Q,使 OP +OQ = a. 试求 PQ 的中点的轨迹.
试证方程 x² + 6xy + 9y² + 4x + 12y -5 = 0 之轨迹为二平行直线.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.