问答题(1979年全国统考

外国船只,除特许者外,不得进人离我海岸线 d海里的区域.设 A 及 B 是我们的观测站 , A 及 B 间的距离为s海里,海岸线是过 A 、B 的直线. 一外国船只在P点.在 A 站测得∠BAP=α ,同时在 B 站测得∠ABP=β,问及满足什么简单的三角函数值不等式,就应当向此未经特许的外国船只发出警告,命令退出我海域?

答案解析

如图,自P向直线AB作垂线PC,垂足为C.设PC=d.在△PAC中,AC=dcotα在△PBC中,BC=dcotβ∴ s=AC+BC=d(cotα+cotβ).∴ d=s/(cotα+cotβ)当 d...

查看完整答案

讨论

在 ① ac =, ② csin A = 3, ③ c = b 这三个条件中任选一个, 补充在下面问题中, 若问题中的三角形存在, 求 c 的值; 若问题中的三角形不存在, 说明理由.问题: 是否存在 △ABC, 它的内角 A, B, C 的对边分别为 a, b, c, 且 sinA = sinB, C = π/6 ,__________?注: 如果选择多个条件分别解答, 按第一个解答计分.

在 △ABC 中, a + b = 11, 再从条件 ①、条件 ② 这两个条件中选择一个作为已知, 求:(I) a 的值;(II) sin C 和 △ABC 的面积.条件 ①: c = 7, cos A = -1/7;条件 ②: cos A = 1/8, cos B = 9/16.注: 如果选择条件 ① 和条件 ② 分别解答, 按第一个解答计分.

在 △ABC 中, 角 A, B, C 所对的边分别为 a, b, c. 已知 a = 2√2, b = 5, c = .(I) 求角 C 的大小;(II) 求 sin A 的值;(III) 求 sin⁡(2A+π/4) 的值.

在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.

在 △ABC 中, 角 A、 B、 C 的对边分别为 a、 b、 c. 已知 a = 3, c = , B = 45º. (1) 求 sinC 的值;(2) 在边 BC 上取一点 D, 使得 cos∠ADC =-4/5, 求 tan∠DAC 的值.

记△ABC的内角A,B,C的对边分别为a,b,c,已知b2=ac,点D在边AC上,BDsin∠ABC=asinC.(1)证明:BD=b;(2)若AD=2DC,求cos∠ABC.

记△ABC的内角A,B,C的对边分别为a,b,c,面积为,B=60°,a2+c2=3ac,则b=______.

已知在△ABC中,c=2bcosB,C=2π/3.(1)求B的大小;(2)在三个条件中选择一个作为已知,使△ABC存在且唯一确定,并求BC边上的中线长度.①c=b;②周长为4+2;③面积为S△ABC=3/4.

在△ABC中,已知a=3,b=2c.(1)若A=2π/3,求S△ABC.(2) 若2sinB-sinC=1,求C△ABC.

在△ABC中,角A,B,C所对的边分别为a,b,c.已知sinA:sinB:sinC=2:1:√2,b=√2.(1)求a的值;(2)求cosC的值;(3)求sin⁡(2C-π/6)的值.