填空题(1998年全国统考

设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.

答案解析

16/3

讨论

设双曲线 C 的方程为 x2/a2 -y2/b2 =1 (a > 0, b > 0), 过抛物线 y2 = 4x 的焦点和点 (0, b) 的直线为 l. 若 C 的一条渐近线与 l 平行, 另一条渐近线与 l 垂直, 则双曲线 C 的方程为【 】.

双曲线C1: x2/4-y2/b2 =1 与圆 C2 : x2 + y2 = 4 + b2 (b > 0) 交于点 A(xA, yA), 曲线 Γ 满足 x > |xA| 并在曲线 C1、C2 上.(1) 若 xA=, 求 b 的值;(2) b =, 圆 C2 与 x 轴交于点 F1, F2, P 在第一象限, |PF1| = 8, 求 ∠F1PF2;(3) 点 D(0,b2/2+2), 过该点的直线斜率为 -b/2 的直线 l 和 Γ 只有两个交点, 记作 M, N, 用 b 表示 ∙,并求其取值范围.

双曲线y2/16 - x2/9=1的准线方程是__________.

双曲线2mx2 - my2 = 2的一条准线是y=1,则m=______.

双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P,Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.

已知双曲线C的实半轴长与虚半轴长的乘积为,C的两个焦点分别为F1,F2,直线l过F2且与直线F1 F2的夹角为φ,tanφ=/2,l与线段F1 F2的垂直平分线的交点是P,线段PF2与双曲线C的交点为Q,且|PQ|:|QF2 |=2:1.求双曲线C的方程.

焦点为F1(-2,0)和F2(6,0),离心率为2的双曲线的方程是____________.

如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为【 】

已知双曲线x2/a2 -y2/b2 =1(a>0,b>0)的左焦点为F,过F且斜率为b/4a的直线交双曲线于点A(x1,y1 ),交双曲线的渐近线于点B(x2,y2 )且x1<0<x2.若|FB|=3|FA|,则双曲线的离心率是_________.

已知双曲线中心在原点,且一个焦点为F(√7,0),直线y=x-1与其相交于M,N两点,MN的中点横坐标为-2/3,则此双曲线的方程是【 】

外国船只,除特许者外,不得进人离我海岸线 d海里的区域.设 A 及 B 是我们的观测站 , A 及 B 间的距离为s海里,海岸线是过 A 、B 的直线. 一外国船只在P点.在 A 站测得∠BAP=α ,同时在 B 站测得∠ABP=β,问及满足什么简单的三角函数值不等式,就应当向此未经特许的外国船只发出警告,命令退出我海域?

设等腰△OAB的顶角为 2θ,高为h.(1) 在△OAB内有一动点P,到三边OA,OB,AB的距离分别为|PD|,|PF|,|PE|,并且满足关系式|PD|∙|PF|=|PE|2,求P点的轨迹.(2) 在上述轨迹中定出点P的坐标,使得|PD|+|PE|=|PF|.

某人要作一个三角形,要求它的三条高的长度分别是1/13 ,1/11 ,1/5 ,则此人将【 】

圆x2 + 2x + y2 + 4y - 3 = 0上到直线x + y + 1 = 0的距离为的点共有【 】个。

圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是【 】

一动圆与两圆: x2 + y2 = 1和x2 + y2 - 8x + 12 = 0 都外切,则动圆圆心的轨迹为【 】

如图,若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则【 】

已知l1,l2是过点P(-,0)的两条互相垂直的直线,且l1,l2于双曲线y2 - x2=1各有两个交点,分别为A1 B1 和A2 B2.(Ⅰ)求l1的斜率k的取值范围;(Ⅱ)若|A1 B1 |= |A2 B2 |,求l1,l2的方程.

如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a=【 】

设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.