问答题(1991年全国统考

双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P,Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.

答案解析

设双曲线的方程为x2/a2 -y2/b2 =1.依题意,点P,Q的坐标满足方程组(其中c=),整理得(5b2-3a2 ) x2+6a2 cx-(3a2 c2+5a2 b2 )=0. ③设方程③的两个根为x1,x2,若5b2-3a2=0,则b/a=,即直线②与双曲线①的两条渐近线中的一条平行,故与双曲线只能有一个交点,与题设矛盾.所以5b2-3a2≠0.根据根与系数的关系,有 由于P,Q在直线y= (x-c)上,可记为P(x1,(x1-c)),Q(x2, (x2-c)).由OP⊥OQ得( (x1-c))/x1 ∙( (x...

查看完整答案

讨论

造型 可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O,且C上的点满足:横坐标大于-2,到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为4,则【 】

已知方程 kx2+y2=4 ,其中k为实数。对于不同范围的k值,分别指出方程所代表图形的类型 ,并画出显示其数量特征的草图.

已知F1,F2为椭圆C:x2/16+y2/4=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2 |,则四边形PF1QF2的面积为________.

设B是椭圆C:x2/5+y2=1的上顶点,点P在C上,则|PB|的最大值为【 】

已知Γ:x2/2+y2=1,F1,F2是其左、右焦点,直线l过点P(m,0)(m≤-),交椭圆于A,B两点,且A,B在x轴上方,点A在线段BP上.(1)若B是上顶点,||=||,求m的值;(2)若∙=1/3,且原点O到直线l的距离为4/15,求直线l的方程;(3)证明:对于任意m<-,使得//的直线有且仅有一条.

已知椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F,上顶点为B,离心率为(2√5)/5,且|BF|=√5.(1)求椭圆的方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P,若MP//BF,求直线l的方程.

英:Find the equation to the normal to hyperbola x2/a2 -y2/b2 =1 at the point (x1,y1) . 汉:求双曲线x2/a2 -y2/b2 =1在点(x1,y1)处的法线方程.

The point of contact of a tangent to an hyperbola is midway between the points in which the tangent meets the asymptotes.

双曲线之切线与渐近线相交,试证切点移动其所包围之三角形之面积为常数.

Reduce the hyperbola 4x² - 9y² - 24x + 36y - 36 = 0 to standard form.