问答题(1991年全国统考

双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P,Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.

答案解析

设双曲线的方程为x2/a2 -y2/b2 =1.依题意,点P,Q的坐标满足方程组(其中c=),整理得(5b2-3a2 ) x2+6a2 cx-(3a2 c2+5a2 b2 )=0. ③设方程③的两个根为x1,x2,若5b2-3a2=0,则b/a=,即直线②与双曲线①的两条渐近线中的一条平行,故与双曲线只能有一个交点,与题设矛盾.所以5b2-3a2≠0.根据根与系数的关系,有 由于P,Q在直线y= (x-c)上,可记为P(x1,(x1-c)),Q(x2, (x2-c)).由OP⊥OQ得( (x1-c))/x1 ∙( (x...

查看完整答案

讨论

于双曲线4/3 (x-2)2-(y+1)2=1中,已知其一直径之斜度为1/3,试求此直径及其共轭直径之方程式,若以此二共轭直径为新坐标轴,试求双曲线之新方程式.

有圆锥曲线方程式为 5x² -4y² - 20x - 24y + 4= 0,试求其中心、焦点、渐近线、准线.

试证双曲线之两渐近线及任一切线所成之三角形之面积等于一常数.

在双曲线x2/a2 -y2/b2 =1上意一点 P作切线交此双曲线之两渐近线(asymptotes)在于Q及 R,若 O 为此双曲线之中心,试求 △OQR 外接圆心之轨迹.

设有等边双曲线 (equilateral hyperbola) xy =1.今于其上取三点 A,B,C 联成三角形,而 A,B,C 之横标 (abscissa) 依次为 a,b,c.(1).求证过 △ABC 三顶点作向对边之垂线会于一点(2).求出三垂线之交点坐标,并证明此交点在双曲线上.

已知双曲线C:x²/a² -y²/b² =1(a>0,b>0)的左、右焦点分别为F1,F2.点A在C上,点B在y轴上,(F1 A) ➝⊥(F1 B) ➝,(F2 A) ➝=-2/3 (F2 B) ➝,则C的离心率为________.

设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.

设双曲线 C : x2/a2 -y2/b2 =1 (a > 0, b > 0) 的左、右焦点分别为 F1, F2, 离心率为. P是 C 上一点, 且 F1P⊥F2P . 若 △PF1F2 的面积为 4, 则 a =【 】