双曲线2mx2 - my2 = 2的一条准线是y=1,则m=______.
在双曲线x2/a2 -y2/b2 =1上意一点 P作切线交此双曲线之两渐近线(asymptotes)在于Q及 R,若 O 为此双曲线之中心,试求 △OQR 外接圆心之轨迹.
求圆锥曲线 2x²-8xy - 4y² - 4y +1=0 之焦点及准线.
双曲线上一点与其两渐近线之阿离如何?并证此两距离相乘之积为常数.
过原点作直线垂直于双曲线 x²-y² = a² 上一切线,求垂足之轨迹之极坐标方程.
已知双曲线C的焦点为(-2,0)和(2,0),离心率为√2,则C的方程为____________.
设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】
设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.
已知双曲线 C :x2/6-y2/3=1, 则 C 的右焦点的坐标为_______; C 的焦点到其渐近线的距离是 ______.
在平面直角坐标系 xOy 中, 若双曲线 x2/a2 -y2/5=1 (a > 0) 的一条渐近线方程为 y=/2 x , 则该双曲线的 离心率是_______.
已知双曲线方程x2/20-y2/5=1,那么它的焦距是【 】
如果曲线x2-y2-2x-2y-1=0经过平移坐标轴后的新方程为x'2-y'2=1,那么新坐标系的原点在原坐标系中的坐标为【 】
设D为△ABC一边BC之中点,证AD²=1/4(2AB²+2AC²-BC²)
有等高的两竿,自其底连线上一点望之,较近之竿的仰角为 60°,若自该点向此线之垂直方向行 80 尺而测之,得二竿之仰角为 45°,30°,试求二竿之高及其间的距离.
一圆经过两点(2,-3),(-4,-1),而其中心在直线3y+x-18=0上,求圆的方程.
设人眼在墙顶上观察一塔,测得塔之全长所夹之角为θ,设墙高为h尺,墙与塔之距离为d尺.试证:(h²+d²)sinθ/(hsinθ+dcosθ)尺为塔这高.
试证三角形∠A之内角平分线之长为2bc∙cos(A/2)/(b+c).
有三角形底边长是 2a,求顶点的轨迹,使其它二边的相乘积为 a².
堤上有塔高 50 尺,自堤下地面某点测得塔顶之仰角为 75°,塔底之仰角为 45°,求堤高.
△ABC 之底边 BC 的位置及长均为已知,自 B 至 AC 边之中线长亦为已知,求 A 点之轨迹.