问答题(1949年山东大学

有等高的两竿,自其底连线上一点望之,较近之竿的仰角为 60°,若自该点向此线之垂直方向行 80 尺而测之,得二竿之仰角为 45°,30°,试求二竿之高及其间的距离.

答案解析

暂无答案

讨论

在△ABC中,角A,B,C所对的边分别为a,b,c.已知sinA:sinB:sinC=2:1:√2,b=√2.(1)求a的值;(2)求cosC的值;(3)求sin⁡(2C-π/6)的值.

记△ABC的三个内角分别为A,B,C,其对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3,已知S1-S2+S3=√3/2,sin⁡B=1/3.(1)求△ABC的面积;(2)若sin⁡A sin⁡C=√2/3,求b.

函数f(x)=a-√3tan2x在闭区间[-π/6,b]上的最大值为7,最小值为3,则a×b的值为【 】

设A,B,C与a,b,c依次为一三角形之三角与三边,试证a/(b+c)=

英:Show how to describe a triangle having given its angles and its perimeter.汉:己知三角形三角及周长,解此三角形.

A,B,C are the angles of a triangle, prove that tanA+tanB+tanC=tanAtanBtanC.

设自 A 地量得敌人炮台所在地 B 及另一地 C 间之角 ∠ABC 为 70°20',自C 地量得 ∠ACB 为 62°50',且量得 AC 两地之距离为 10.6 公里问 A 地至敌人炮台之距离为若干?(sin62°50'= 0.8897;cos70°20' =0.3365)

两树相距 50 尺,在此树距地 5 尺处观他树之树顶与树根适成 90°之角,又观他树顶之仰角为 60°,求他树之高.

在平地上一点 A,测得某山顶 P 之仰角 (elevation) 为 60°,自 A 点,在平地上,向山麓前进 800 尺至 B 点.自 B 点沿一与平地倾斜 30°之斜坡,再向山顶前进 800 尺,至 C 点,在 C 点测得山顶 P之仰角为 75°.若 A,B,C,P四点在一垂直平面内,求此山之高.

于 A,B,C 三阵地测得敌机之仰角为 60°,45°,45°,今 B 地在 A 地正北 3000尺,C 地在 A 地之正西 4000 尺,求敌机之高,并讨论之.