已知圆x2 + y2 - 6x - 7 = 0与抛物线y2 = 2px(p>0)的准线相切,则p=________.
经过抛物线焦点的弦与抛物线的轴成角θ,试证此弦在抛物线内之截线等于L/sin²θ ,其中L为正焦弦之长(经过焦点而又垂直于轴之弦,称为正焦弦).
已知抛物线y2=2px(p>0),若第一象限的点A,B在抛物线上,焦点为F,|AF|=2,|BF|=4,|AB|=3,直线AB的斜率为__________.
已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则【 】
设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】
设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】
设S为抛物线y2=4x的焦点,过点P(-2,1)做抛物线的切线,切点分别为P1与P2,线段SP1上的点Q1与线段SP2上的点Q2满足PQ1⊥SP1,PQ2⊥SP2,则以下说法正确的是【 】
求经过定点M(1,2),以y轴为准线,离心率为1/2的椭圆的左顶点的轨迹方程.
设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.
已知点P在直线x=2上移动,直线l通过原点且与OP垂直,通过点A(1,0)及点P的直线m和直线l交于点Q.求点Q的轨迹方程,并指出该迹的名称和它的焦点坐标.
椭圆9x2 + 16y2 = 144的离心率为______.
已知椭圆x2/a2 +y2/b2 =1(a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明:-(a2 - b2)/a < x0 < (a2 - b2)/a.
如图,在面积为1的△PMN中,tanM=1/2,tanN=-2.建立 适当的坐标系,求出以M,N为焦点且过点P的椭圆方程.
关于直交轴有三直线: x=0,y=0,x/a+y/b=1.求与此三直线相切之圆之方程式.
求过直线 2x -y+4 =0 与圆 x² +y² + 2x -4y +1 = 0之二交点并点(1,1)之圆之方程式.
设圆 x² +y² = a²交横轴于 A、B 二点,自圆上任意一点 Q 作切线,自 A 作直线垂直于切线与 BQ 交于 P,求 P之轨迹.
求原点平移至(2,-5)后,曲线7x²+8y²-28x+80y+172=0之方程式.
AB 为一圆之一条固定弦,R 是圆上之一运动的点,求三角形 ABR 的垂心的轨迹.
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
已知二圆C1:x²+y²-6x=0,C2:x²+y²-4=0,求通过C1,C2之两交点及另一点(2,-2)之圆的方程式.
求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.