已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则【 】
A、C的准线为y=-1
B、直线AB与C相切
C、|OP|⋅|OQ|>|OA|2
D、|BP|⋅|BQ|>|BA|2
已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则【 】
A、C的准线为y=-1
B、直线AB与C相切
C、|OP|⋅|OQ|>|OA|2
D、|BP|⋅|BQ|>|BA|2
BCD将点A的代入抛物线方程得1=2p,所以抛物线方程为x2=y,故准线方程为y=-1/4,A错误;kAB=(1-(-1))/(1-0)=2,所以直线AB的方程为y=2x-1,联立,可得 x2-2x+1=0,解得x=1,故B正确;设过B的直线为l,若直线l与y轴重合,则直线l与抛物线C只有一个交点,所以,直线l的斜率存在,设其方程为y=kx-1,P(x1,...
查看完整答案定长为3的线段AB的两个端点在抛物线y2=x上移动,记线段AB的中点为M.求点M到y轴的最短距离,并求此时点M的坐标.
已知直线l:x - ny = 0(n∈N);圆M:(x+1)2 + (y+1)2 = 1;抛物线Φ:y=(x-1)2.又l与M交于点A,B;l与Φ交于点C,D.求|AB|2/|CD|2.
抛物线y2 = 4x的弦AB垂直于x轴,若AB的长为4,则焦点到AB的距离为______。
抛物线y2 = 8 - 4x的准线方程是________,圆心在该抛物线的顶点且与其准线相切的圆的方程是____________.
如图,已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.
直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=________.
已知圆x2 + y2 - 6x - 7 = 0与抛物线y2 = 2px(p>0)的准线相切,则p=________.
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.
已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直, Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为__________.
已知双曲线C的焦点为(-2,0)和(2,0),离心率为√2,则C的方程为____________.
设双曲线x²/a² -y²/b² =1(a>0,b>0)的左右焦点分别为F1,F2,过F2作平等于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为______.
设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】
设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.