填空题(1994年全国统考

抛物线y2 = 8 - 4x的准线方程是________,圆心在该抛物线的顶点且与其准线相切的圆的方程是____________.

答案解析

x = 3 , (x-2)2 + y2 = 1

讨论

已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p=【 】。

设 O 为坐标原点, 直线 x = 2 与抛物线 C : y2 = 2px (p > 0) 交于 D, E 两点, 若 OD ⊥ OE, 则 C 的焦点坐标为【 】

斜率为 的直线过抛物线 C : y2 = 4x 的焦点, 且与 C 交于 A, B 两点, 则 |AB| =______.

设抛物线的顶点为 O, 焦点为 F , 准线为 l. P 是抛物线上异于 O 的一点, 过 P 作 PQ ⊥ l 于 Q, 则线段 FQ 的垂直平分线【 】

如图, 已知椭圆 C1: x2/2+y2=1, 抛物线 C2: y2=2px (p > 0), 点 A 是椭圆 C1 与抛物线 C2 的交点, 过点 A的直线 l 交椭圆 C1 于点 B, 交抛物线 C2 于 M (B, M 不同于 A).(I) 若 p=1/16 , 求抛物线 C2 的焦点坐标;(II) 若存在不过原点的直线 l 使 M 为线段 AB 的中点, 求 p 的最大值.

已知函数y=x2+(2m+1)x+m2-1(m为实数)(1) m是什么数值时,y的极值是0?(2) 求证:不论m是什么数值,函数图像(即抛物线)的顶点都在同一条直线l1上.画出m=-1,0,1时抛物线的草图,来检验这个结论.(3) 平行于l1的直线中,哪些与抛物线相交,哪些不相交?求证:任一条平行于l1而与抛物线相交的直线,被各抛物线截出的线段都相等.

抛物线的方程是y2=2x,有一个半径为1的圆,圆心在x上运动.问这个圆运动到什么位置时,圆与抛物线在交点处的切线互相垂直?(注:设P(x0,y0)是抛物线y2=2px上一点,则抛物线在P点处的切线斜率是p/y0 )

抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⨀M与l相切.(1) 求C,⨀M的方程;(2) 设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⨀M相切.判断直线A2A3与⨀M的位置关系,并说明理由.

试讨论方程式 3y² + 2x + 1=0 所表示之曲线.

经过抛物线焦点的弦与抛物线的轴成角θ,试证此弦在抛物线内之截线等于L/sin²⁡θ ,其中L为正焦弦之长(经过焦点而又垂直于轴之弦,称为正焦弦).

如图,在面积为1的△PMN中,tanM=1/2,tanN=-2.建立 适当的坐标系,求出以M,N为焦点且过点P的椭圆方程.

已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.

已知椭圆C:x2/a2 +y2/b2 =1(a>b>0)的离心率为1/3,A1,A2分别为C的左、右顶点,B为C的上顶点.若(BA1)⋅(BA2)=-1,则C的方程为【 】

已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),B(3/2,-1)两点.(1)求E的方程;(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足(MT)→=(TH)→.证明:直线HN过定点.

已知椭圆: E:x2/a2 +y2/b2 =1(a>b>0)的一个顶点为A(0,1),焦距为2√3.(1)求椭圆E的方程;(2)过点P(-2,1)作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当|MN|=2时,求k的值.

如图,已知椭圆x2/12+y2=1.设A,B是椭圆上异于P(0,1)的两点,且点Q(0,1/2)在线段AB上,直线PA,PB分别交直线y=-1/2 x+3于C,D两点. (1)求点P到椭圆上点的距离的最大值;(2)求|CD|的最小值.

双曲线之切线与渐近线相交,试证切点移动其所包围之三角形之面积为常数.

于双曲线4/3 (x-2)2-(y+1)2=1中,已知其一直径之斜度为1/3,试求此直径及其共轭直径之方程式,若以此二共轭直径为新坐标轴,试求双曲线之新方程式.

有圆锥曲线方程式为 5x² -4y² - 20x - 24y + 4= 0,试求其中心、焦点、渐近线、准线.

试证双曲线之两渐近线及任一切线所成之三角形之面积等于一常数.