已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),B(3/2,-1)两点.
(1)求E的方程;
(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足(MT)→=(TH)→.证明:直线HN过定点.
已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),B(3/2,-1)两点.
(1)求E的方程;
(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足(MT)→=(TH)→.证明:直线HN过定点.
(1)设椭圆E的方程为mx2+ny2=1,过A(0,-2),B(3/2,-1),则,解得m=1/3,n=1/4,所以椭圆E的方程为:y2/4+x2/3=1.(2)A(0,-2),B(3/2,-1),所以AB:y+2=2/3 x,①若过点P(1,-2)的直线斜率不存在,直线x=1.代入x2/3+y2/4=1,可得 M(1,2√6/3),N(1,-2√6/3),代入AB方程y=2/3 x-2,可得T(√6+3,2√6/3 ),由(MT) =(TH) 得到H(2√6+5,2√6/3 ).求得HN方程:y=(2-2√6/3)x-2,过点(0,-2).②若过点P(1,-2)的直线斜率存在,设kx-y-(...
查看完整答案焦点为F1(-2,0)和F2(6,0),离心率为2的双曲线的方程是____________.
如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为【 】
设F1和F2为双曲线x2/4 - y2 = 1的两个焦点,点P在双曲线上且满足∠F1PF2 = 90°,则△F1PF2的面积是【 】
设双曲线x2/a2 - y2/b2 =1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线l的距离为/4 c,则双曲线的离心率为【 】
若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率为【 】
设P为双曲线x2/4 - y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是____________.
设F1,F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点.已知P,F1,F2是一个直角三角形的上顶点,且|PF1|>|PF2|,求|PF1|/|PF2| 的值.
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上。若PF1⊥PF2,则点P到x轴的距离为______.
已知椭圆x2/2+y2=1的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A,B两点,点C在右准线l上,且BC//x轴.求证直线AC经过线段EF的中点.
已知F1,F2为椭圆C:x2/16+y2/4=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2 |,则四边形PF1QF2的面积为________.
求椭园25x2+9y2=100的长轴和短轴的长、焦点坐标,并且画出它的图像。
已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。
已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.
已知椭圆x2/16+y2/4=1的左右焦点分别为F1与F2,点P在直线l:x-√3 y+8+2√3=0上.当∠F1 PF2取最大值时,比|PF1 |/(|PF2 |)的值为____________.
自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.
如果实数x,y满足等式(x-2)2+y2=3,那么y/x的最大值是【 】
过点(1,2)且与直线2x + y - 1 = 0平行的直线方程是__________.
如果AC < 0,且BC < 0,那么直线Ax + By + C = 0不通过【 】
圆x2 + 2x + y2 + 4y - 3 = 0上到直线x + y + 1 = 0的距离为的点共有【 】个。
圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是【 】