已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。
设 F 是抛物线的焦点,在抛物线上任取一点 P 与焦点连接,由 P 作 PQ平于主轴,试证 P 点的法线平分 ∠FPQ.
在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,1/2)的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3√3.
设O为坐标原点,直线y=-√3(x-1)过抛物线C:y²=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则【 】
已知抛物线C:y²=8x的焦点为F,点M在C上.若M到直线x=-3距离为5,则|MF|=【 】
斜率为 的直线过抛物线 C : y2 = 4x 的焦点, 且与 C 交于 A, B 两点, 则 |AB| =______.
若动点P到F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为___________.
定长为3的线段AB的两个端点在抛物线y2=x上移动,记线段AB的中点为M.求点M到y轴的最短距离,并求此时点M的坐标.
已知直线l:x - ny = 0(n∈N);圆M:(x+1)2 + (y+1)2 = 1;抛物线Φ:y=(x-1)2.又l与M交于点A,B;l与Φ交于点C,D.求|AB|2/|CD|2.
已知双曲线方程x2/20-y2/5=1,那么它的焦距是【 】
如果曲线x2-y2-2x-2y-1=0经过平移坐标轴后的新方程为x'2-y'2=1,那么新坐标系的原点在原坐标系中的坐标为【 】
如果双曲线x2/64-y2/36=1上一点P到它的右焦点的距离是8,那么点P到它的右准线的距离是【 】
双曲线y2/16 - x2/9=1的准线方程是__________.
双曲线2mx2 - my2 = 2的一条准线是y=1,则m=______.
焦点为F1(-2,0)和F2(6,0),离心率为2的双曲线的方程是____________.
如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为【 】
设F1和F2为双曲线x2/4 - y2 = 1的两个焦点,点P在双曲线上且满足∠F1PF2 = 90°,则△F1PF2的面积是【 】
设F1,F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点.已知P,F1,F2是一个直角三角形的上顶点,且|PF1|>|PF2|,求|PF1|/|PF2| 的值.
已知椭圆x2/2+y2=1的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A,B两点,点C在右准线l上,且BC//x轴.求证直线AC经过线段EF的中点.
已知F1,F2是椭圆C:x2/9+y2/4=1的两个焦点,点M在C上,则|MF1|∙|MF2|的最大值为【 】
求椭园25x2+9y2=100的长轴和短轴的长、焦点坐标,并且画出它的图像。
已知A(0,3)和P(3,3/2)为椭圆C:x²/a² +y²/b² =1(a>b>0)上两点.(1)求椭圆C的离心率;(2)若过点P的直线l交C于另一点B,且△ABP的面积为9,求l的方程.