填空题(1992年全国统考

焦点为F1(-2,0)和F2(6,0),离心率为2的双曲线的方程是____________.

答案解析

(x-2)2/4 - y2/12=1

讨论

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.

设双曲线 C : x2/a2 -y2/b2 =1 (a > 0, b > 0) 的左、右焦点分别为 F1, F2, 离心率为. P是 C 上一点, 且 F1P⊥F2P . 若 △PF1F2 的面积为 4, 则 a =【 】

已知双曲线 C :x2/6-y2/3=1, 则 C 的右焦点的坐标为_______; C 的焦点到其渐近线的距离是 ______.

设双曲线 C 的方程为 x2/a2 -y2/b2 =1 (a > 0, b > 0), 过抛物线 y2 = 4x 的焦点和点 (0, b) 的直线为 l. 若 C 的一条渐近线与 l 平行, 另一条渐近线与 l 垂直, 则双曲线 C 的方程为【 】.

双曲线C1: x2/4-y2/b2 =1 与圆 C2 : x2 + y2 = 4 + b2 (b > 0) 交于点 A(xA, yA), 曲线 Γ 满足 x > |xA| 并在曲线 C1、C2 上.(1) 若 xA=, 求 b 的值;(2) b =, 圆 C2 与 x 轴交于点 F1, F2, P 在第一象限, |PF1| = 8, 求 ∠F1PF2;(3) 点 D(0,b2/2+2), 过该点的直线斜率为 -b/2 的直线 l 和 Γ 只有两个交点, 记作 M, N, 用 b 表示 ∙,并求其取值范围.

在平面直角坐标系 xOy 中, 若双曲线 x2/a2 -y2/5=1 (a > 0) 的一条渐近线方程为 y=/2 x , 则该双曲线的 离心率是_______.

给定双曲线x2-y2/2=1.(1) 过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.(2) 过点B(1,1)能否作直线过点m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.

抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与抛物线x2=2qy相切.

若动点P到F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为___________.