证明题(1982年全国统考

抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与抛物线x2=2qy相切.

答案解析

不失一般性,设p>0,q>0.又设y2=2px的内接三角形顶点为A1 (x1,y1 ),A2 (x2,y2 ),A3 (x3,y3).因此 y12=2px1,y22=2px2,y32=2px3.其中,y1≠y2,y2≠y3,y3≠y1.依题意,设A1,A2,A3与抛物线x2=2qy相切. 因为x2=2qy在原点O处的切线是y2=2px的对称轴,所以原点O不能是所设内接三角形的顶点,即(x1,y1 ) ,(x2,y2 ),(x3,y3)都不能是(0,0).又因为A1 A2与x2=2qy相切,所以A1 A2不能与y轴平行,即x1≠x2,y1≠-y2,直线A1 A2的方程为y-y1=(y2-y1)/(x2-x1 )(x-x1),∵y22-y12=(y2-y1 )(y2+y1 )=2p(x2-x1),∴A1 A2的方程是y=2p/(y1+y2 ) x+(y1 y2)/(y1+y2 ).A1 A2与抛物线x2=2qy交点的横坐标满...

查看完整答案

讨论

Show that the tangents to the parabola y² = 4px at the extremities of the latus return are perpendicular and meet at the intersection of the directrix with a-axis.

从点(-8,8)引 2xy +y² =8 的两条切线,求它们的夹角.

若相相之二抛物线具有相同之顶点,且其主轴互相垂直,试证其公切线必与二抛物线各切于其通径之一端.

设 F 是抛物线的焦点,在抛物线上任取一点 P 与焦点连接,由 P 作 PQ平于主轴,试证 P 点的法线平分 ∠FPQ.

在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,1/2)的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3√3.

直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=________.

已知圆x2 + y2 - 6x - 7 = 0与抛物线y2 = 2px(p>0)的准线相切,则p=________.

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.

已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.

双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上。若PF1⊥PF2,则点P到x轴的距离为______.

在平面直角坐标系xOy中,已知点F1(-,0),F2 (,0),点M满足:|MF1|-|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=1/2上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|∙|TB|=|TP|∙|TQ|,求直线AB的斜率与直线PQ的斜率之和.

已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为【 】

已知双曲线x2/m - y2=1(m>0)的一条渐近线为 x+my=0,则C的焦距为________.

双曲线x2/4 - y2/5=1的右焦点到直线x+2y-8=0的距离为______.

已知双曲线x2/a2 -y2/b2 =1(a>0,b>0)的右焦点与抛物线y2=2px(p>0)的焦点重合,抛物线的准线交双曲线于A、B两点,交双曲线的渐近线与C、D两点,若|CD|=√2|AB|,则双曲线的离心率为【 】

已知点A(2,1)在双曲线C:x2/a2 -y2/(a2-1)=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan⁡∠PAQ=2√2,求△PAQ的面积.

设双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±√3 x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1 ),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为-√3的直线与过Q且斜率为 的直线交于点M,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M在AB上;②PQ//AB;③|MA|=|MB|.注:若选择不同的组合分别解答,则按第一个解答计分.