已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则【 】
A、直线AB的斜率为2√6
B、|OB|=|OF|
C、|AB|>4|OF|
D、∠OAM+∠OBM<180°
已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则【 】
A、直线AB的斜率为2√6
B、|OB|=|OF|
C、|AB|>4|OF|
D、∠OAM+∠OBM<180°
ACD对于A,易得F(p/2,0),由|AF|=|AM|可得点A在FM的垂直平分线上,则A点横坐标为(p/2+p)/2=3p/4,代入抛物线可得y2=2p⋅3p/4=3/2 p2,则A(3p/4,√6p/2),则直线AB的斜率为(√6 p/2)/(3p/4-p/2)=2√6,A正确;对于B,由斜率为2√6可得直线AB的方程为x=1/(2√6) y+p/2,联立抛物线方程得y2-1/√6 py-p2=0,设B(x1,y1),则√6/2 p+y1=√6/6 p,则y1=-(√6 p)/3,代入抛物线得(-(√6 p)/3)2=2p⋅x1,解得x1=p/3,则B(p/3,-(√6 p)/3),|OB|==...
查看完整答案过抛物线y=ax2 (a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p,q,则1/p+1/q等于【 】
对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是【 】
已知抛物线C:y2=2px(p>0)的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足=9,求直线OQ斜率的最大值.
已知抛物线C:y2=4x,焦点为F,点M在C上,且|FM|=6,则M的横坐标是______;作MN⊥x轴于N,则S△FMN=______.
已知抛物线y2=2px(p>0),若第一象限的点A,B在抛物线上,焦点为F,|AF|=2,|BF|=4,|AB|=3,直线AB的斜率为__________.
已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.
已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则【 】
设 F 是抛物线的焦点,在抛物线上任取一点 P 与焦点连接,由 P 作 PQ平于主轴,试证 P 点的法线平分 ∠FPQ.
已知方程x2/(2+λ)-y2/(1+λ)=1表示双曲线,求λ的取值范围.
双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P,Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.
如图,给出定点A(a,0)(a>0)和直线l:x=-1.B是直线l上的动点,∠BOA的平分线交AB于点C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.
已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为【 】
点(3,0)到双曲线x2/16 - y2/9=1的一条渐近线的距离为【 】
已知双曲线x2/m - y2=1(m>0)的一条渐近线为 x+my=0,则C的焦距为________.
双曲线x2/4 - y2/5=1的右焦点到直线x+2y-8=0的距离为______.