单项选择(2000年全国新课程

下图中阴影部分的面积是【 】

A、2

B、9-2

C、32/3

D、35/3

答案解析

C

讨论

直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=________.

已知圆x2 + y2 - 6x - 7 = 0与抛物线y2 = 2px(p>0)的准线相切,则p=________.

已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

过抛物线y=ax2 (a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p,q,则1/p+1/q等于【 】

试讨论方程式 3y² + 2x + 1=0 所表示之曲线.

经过抛物线焦点的弦与抛物线的轴成角θ,试证此弦在抛物线内之截线等于L/sin²⁡θ ,其中L为正焦弦之长(经过焦点而又垂直于轴之弦,称为正焦弦).

已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】