对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是【 】
A、 (-∞,0)
B、 (-∞,2]
C、[0,2]
D、(0,2)
已知直线l:x - ny = 0(n∈N);圆M:(x+1)2 + (y+1)2 = 1;抛物线Φ:y=(x-1)2.又l与M交于点A,B;l与Φ交于点C,D.求|AB|2/|CD|2.
抛物线y2 = 4x的弦AB垂直于x轴,若AB的长为4,则焦点到AB的距离为______。
抛物线y2 = 8 - 4x的准线方程是________,圆心在该抛物线的顶点且与其准线相切的圆的方程是____________.
如图,已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.
直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=________.
已知圆x2 + y2 - 6x - 7 = 0与抛物线y2 = 2px(p>0)的准线相切,则p=________.
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.
抛物线x2 - 4y - 3=0的焦点坐标为________.
已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则【 】
设S为抛物线y2=4x的焦点,过点P(-2,1)做抛物线的切线,切点分别为P1与P2,线段SP1上的点Q1与线段SP2上的点Q2满足PQ1⊥SP1,PQ2⊥SP2,则以下说法正确的是【 】
试证在抛物线正焦弦两端点所作切线互相垂直,又若此抛物线之方程式为x²=2px,试求其在上述二切线为坐标轴时之新方程式.
设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】
设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.
二直线x+y+4=0,x-y=0各与圆x²+y²-2x+4y-4=0相交,且所围成之二弓形面积相等,试证明之.
过一点 (2,1)的直线与直线 2x - 3y + 12 = 0 成45°角,求直线方程.
若三直线aix+biy+ci=0(i=1,2,3)相交于一点,则=0.试证之.
在定角 XOY 的二边上各取二点 P、Q,使 OP +OQ = a. 试求 PQ 的中点的轨迹.
试证方程 x² + 6xy + 9y² + 4x + 12y -5 = 0 之轨迹为二平行直线.
一圆经过两点(2,-3),(-4,-1),而其中心在直线3y+x-18=0上,求圆的方程.
设人眼在墙顶上观察一塔,测得塔之全长所夹之角为θ,设墙高为h尺,墙与塔之距离为d尺.试证:(h²+d²)sinθ/(hsinθ+dcosθ)尺为塔这高.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.