单项选择(2001年广东省2001年河南省

对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是【 】

A、 (-∞,0)

B、 (-∞,2]

C、[0,2]

D、(0,2)

答案解析

B

讨论

设S为抛物线y2=4x的焦点,过点P(-2,1)做抛物线的切线,切点分别为P1与P2,线段SP1上的点Q1与线段SP2上的点Q2满足PQ1⊥SP1,PQ2⊥SP2,则以下说法正确的是【 】

Given the parabola y²=4x and the line x=2+ecosα,y=-4+ecosβ,find the condition which cosα and cosβ must satisfy if the line meets the parabola in but one point.

试证在抛物线正焦弦两端点所作切线互相垂直,又若此抛物线之方程式为x²=2px,试求其在上述二切线为坐标轴时之新方程式.

设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.

设双曲线 C : x2/a2 -y2/b2 =1 (a > 0, b > 0) 的左、右焦点分别为 F1, F2, 离心率为. P是 C 上一点, 且 F1P⊥F2P . 若 △PF1F2 的面积为 4, 则 a =【 】

给定双曲线x2-y2/2=1.(1) 过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.(2) 过点B(1,1)能否作直线过点m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.

抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与抛物线x2=2qy相切.

求曲线y2=-16x+64的焦点.