抛物线x2 - 4y - 3=0的焦点坐标为________.
过抛物线y=ax2 (a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p,q,则1/p+1/q等于【 】
经过抛物线焦点的弦与抛物线的轴成角θ,试证此弦在抛物线内之截线等于L/sin²θ ,其中L为正焦弦之长(经过焦点而又垂直于轴之弦,称为正焦弦).
设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】
设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】
设S为抛物线y2=4x的焦点,过点P(-2,1)做抛物线的切线,切点分别为P1与P2,线段SP1上的点Q1与线段SP2上的点Q2满足PQ1⊥SP1,PQ2⊥SP2,则以下说法正确的是【 】
试证在抛物线正焦弦两端点所作切线互相垂直,又若此抛物线之方程式为x²=2px,试求其在上述二切线为坐标轴时之新方程式.
F 点为抛物线 y² = 16x 之焦点,O 点为顶点,P 点为抛物线上任一点,PQ 为切线,自 O 点至 PQ 线之垂线与 FP 线相交 R 点,求 R 点之轨迹之方程式并绘其图形.
设F1和F2为双曲线x2/4 - y2 = 1的两个焦点,点P在双曲线上且满足∠F1PF2 = 90°,则△F1PF2的面积是【 】
设双曲线x2/a2 - y2/b2 =1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线l的距离为/4 c,则双曲线的离心率为【 】
如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段AC 所成的比为λ,双曲线过C,D,E三点,且以A,B为焦点.当2/3≤λ≤3/4 时,求双曲线离心率e的取值范围.
双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.
若双曲线y2-x2/m2 =1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=_________.
记双曲线C:x2/a2 -y2/b2 =1(a>0,b>0)的离心率为e,写出满足条件“直线y=2x与C无公共点”的e的一个值_________.
双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的两支交于M,N两点,且cos∠F1NF2=3/5,则C的离心率为【 】
设A,B是x轴上的两点,点P的横坐标为2且|PA|=|PB|.若直线PA的方程为x-y+1=0,则直线PB的方程是【 】
在△ABC中,已知a=3,b=2c.(1)若A=2π/3,求S△ABC.(2) 若2sinB-sinC=1,求C△ABC.
已知点A(-2,3),B(0,a),若直线AB关于y=a的对称直线与圆(x+3)2+(y+2)2=1存在公共点,则实数a的取值范围为________.
已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当AC/AB取得最小值时,BD=________.
在△ABC中,sin2C=√3 sinC.(1)求∠C;(2)若b=6,且△ABC的面积为6√3,求△ABC的周长.
在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=√5 c,cosC=3/5.(1)求sinA的值;(2)若b=11,求△ABC的面积.
在∆ABC中,a=√6,b=2c,cosC=-1/4.(1)求∠C的大小;(2)求sinB的值;(3)求sin(2A-B)的值.