设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】
A、2
B、2√2
C、3
D、3√2
设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】
A、2
B、2√2
C、3
D、3√2
B
【解析】
由题意得,F(1,0),则|AF|=|BF|=2,
即点A到准线x=-1的距离为2,所以点A的横坐标为-1+2=1,
不妨设点A在x轴上方,代入得,A(1,2),
所以|AB|==2√2.
已知椭圆x2/6+y2/3=1,直线l与椭圆在第一象限交于A,B两点,与x轴,y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2√3,则直线l的方程为___________.
椭圆C:x2/a2 +y2/b2 =1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为1/4,则C的离心率为【 】
已知椭圆C:x2/a2 +y2/b2 =1(a>b>0)的离心率为1/3,A1,A2分别为C的左、右顶点,B为C的上顶点.若(BA1)⋅(BA2)=-1,则C的方程为【 】
在平面直角坐标系 xOy 中, 若双曲线 x2/a2 -y2/5=1 (a > 0) 的一条渐近线方程为 y=/2 x , 则该双曲线的 离心率是_______.
已知方程x2/(2+λ)-y2/(1+λ)=1表示双曲线,求λ的取值范围.
双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P,Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.
已知点A(-2,3),B(0,a),若直线AB关于y=a的对称直线与圆(x+3)2+(y+2)2=1存在公共点,则实数a的取值范围为________.
已知向量a→,b→满足|a→-b→ |=√3,|a→+b→ |=|2a→-b→|,则|b→ |=________.
已知向量a→,b→满足a→+b→=(2,3),a→-b→=(-2,1),则|a→ |²-|b→ |²=【 】
已知向量a ̅=(0,1),b ̅=(2,x),若b ̅⊥(b ̅- 4a ̅),则x=【 】
设向量 a = (1, −1), b = (m + 1, 2m − 4), 若 a ⊥ b, 则 m =______ .
己知单位向量 a, b 的夹角为 45°, ka − b 与 a 垂直, 则 k = ______.
已知单位向量 a, b 的夹角为 60°, 则下列向量中, 与 b 垂直的是【 】
在平面内, A, B 是两个定点, C 是动点. •= 1, 则点 C 的轨迹为【 】