单项选择(2022年全国乙·文

设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】

A、2

B、2√2

C、3

D、3√2

答案解析

B

【解析】

由题意得,F(1,0),则|AF|=|BF|=2,

即点A到准线x=-1的距离为2,所以点A的横坐标为-1+2=1,

不妨设点A在x轴上方,代入得,A(1,2),

所以|AB|==2√2.

讨论

已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

设抛物线的顶点为 O, 焦点为 F , 准线为 l. P 是抛物线上异于 O 的一点, 过 P 作 PQ ⊥ l 于 Q, 则线段 FQ 的垂直平分线【 】

如图, 已知椭圆 C1: x2/2+y2=1, 抛物线 C2: y2=2px (p > 0), 点 A 是椭圆 C1 与抛物线 C2 的交点, 过点 A的直线 l 交椭圆 C1 于点 B, 交抛物线 C2 于 M (B, M 不同于 A).(I) 若 p=1/16 , 求抛物线 C2 的焦点坐标;(II) 若存在不过原点的直线 l 使 M 为线段 AB 的中点, 求 p 的最大值.

已知函数y=x2+(2m+1)x+m2-1(m为实数)(1) m是什么数值时,y的极值是0?(2) 求证:不论m是什么数值,函数图像(即抛物线)的顶点都在同一条直线l1上.画出m=-1,0,1时抛物线的草图,来检验这个结论.(3) 平行于l1的直线中,哪些与抛物线相交,哪些不相交?求证:任一条平行于l1而与抛物线相交的直线,被各抛物线截出的线段都相等.

抛物线的方程是y2=2x,有一个半径为1的圆,圆心在x上运动.问这个圆运动到什么位置时,圆与抛物线在交点处的切线互相垂直?(注:设P(x0,y0)是抛物线y2=2px上一点,则抛物线在P点处的切线斜率是p/y0 )

抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与抛物线x2=2qy相切.

求曲线y2=-16x+64的焦点.

过点M(-1,0)的直线l1与抛物线y2=4x交于P1,P2两点.记:线段P1P2的中点这P;过点P和这个抛物线的焦点F的直线为l2;l1的斜率为k.试把直线l2的斜率与直线l1的斜率之比表示为k的函数,并指出这个函数的定义域、单调区间,同时说明在每一单调区间上它是增函数还是减函数.

在抛物线y=4x2上求一点,使该点到直线y=4x-5的距离最短.

已知椭圆x2/6+y2/3=1,直线l与椭圆在第一象限交于A,B两点,与x轴,y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2√3,则直线l的方程为___________.

椭圆C:x2/a2 +y2/b2 =1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为1/4,则C的离心率为【 】

已知椭圆C:x2/a2 +y2/b2 =1(a>b>0)的离心率为1/3,A1,A2分别为C的左、右顶点,B为C的上顶点.若(BA1)⋅(BA2)=-1,则C的方程为【 】

已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),B(3/2,-1)两点.(1)求E的方程;(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足(MT)→=(TH)→.证明:直线HN过定点.

己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.(1) 求 C 的方程;(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.

双曲线C1: x2/4-y2/b2 =1 与圆 C2 : x2 + y2 = 4 + b2 (b > 0) 交于点 A(xA, yA), 曲线 Γ 满足 x > |xA| 并在曲线 C1、C2 上.(1) 若 xA=, 求 b 的值;(2) b =, 圆 C2 与 x 轴交于点 F1, F2, P 在第一象限, |PF1| = 8, 求 ∠F1PF2;(3) 点 D(0,b2/2+2), 过该点的直线斜率为 -b/2 的直线 l 和 Γ 只有两个交点, 记作 M, N, 用 b 表示 ∙,并求其取值范围.

在平面直角坐标系 xOy 中, 若双曲线 x2/a2 -y2/5=1 (a > 0) 的一条渐近线方程为 y=/2 x , 则该双曲线的 离心率是_______.

给定双曲线x2-y2/2=1.(1) 过点A(2,1)的直线l与所给双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程.(2) 过点B(1,1)能否作直线过点m,使m与所给双曲线交于两点Q1及Q2,且点B是线段Q1Q2的中点?这样的直线m如果存在,求出它的方程;如果不存在,说明理由.

已知方程x2/(2+λ)-y2/(1+λ)=1表示双曲线,求λ的取值范围.

双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P,Q两点.若OP⊥OQ,|PQ|=4,求双曲线的方程.