问答题(1977年 安徽省

求椭园25x2+9y2=100的长轴和短轴的长、焦点坐标,并且画出它的图像。

答案解析

暂无答案

讨论

在双曲线x2/a2 -y2/b2 =1上意一点 P作切线交此双曲线之两渐近线(asymptotes)在于Q及 R,若 O 为此双曲线之中心,试求 △OQR 外接圆心之轨迹.

Show that the tangent to a hyperbola makes equal angles with the focal radii drawn to the point of tangency.

判别曲线=0的性质.

设二曲线c1及c2的方程依次为x²+2xy-3y²+2x+2y+2=0及x²+y²-4=0,求1) 过 c1 及 c2的交点的抛物线;2) 过 c1 及 c2 的交点的二次曲线之心之轨迹.

已知双曲线C:x²/a² -y²/b² =1(a>0,b>0)的左、右焦点分别为F1,F2.点A在C上,点B在y轴上,(F1 A) ➝⊥(F1 B) ➝,(F2 A) ➝=-2/3 (F2 B) ➝,则C的离心率为________.

已知双曲线C的焦点为(-2,0)和(2,0),离心率为√2,则C的方程为____________.

设双曲线x²/a² -y²/b² =1(a>0,b>0)的左右焦点分别为F1,F2,过F2作平等于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为______.

设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】

设O为坐标原点, 直线x = a与双曲线 C : x2/a2 - y2/b2 =1(a > 0, b > 0) 的两条渐近线分别交于 D, E 两点. 若△ODE的面积为8, 则 C 的焦距的最小值为【 】

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 设 M 是 C1 与 C2 的公共点. 若 |MF | = 5, 求 C1 与 C2 的标准方程.

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 若C1的四个顶点到C2的准线距离之和为12, 求 C1 与 C2 的标准方程.

己知椭圆 C : x2/25 + y2/m2 = 1 (0 < m < 5) 的离心率为 , A, B 分别为 C 的左、右顶点.(1) 求 C 的方程;(2) 若点 P 在 C 上, 点 Q 在直线 x = 6 上, 且 |BP| = |BQ|, BP⊥BQ, 求 △APQ 的面积.

已知椭圆 x2/4+y2/3=1 , 点 P 在第二象限, F 是其右焦点, PF 交椭圆于 Q, Q 关于 x 轴对称点 Q′, 且PF ⊥ FQ′, 直线 PF 的方程是_______________.

已知点 O(0, 0), A(−2, 0), B(2, 0). 设点 P 满足 |PA| − |PB| = 2, 且 P 为函数 y=3 图像上的点,则 |OP| =【 】

在平面直角坐标系 xOy 中, 已知椭圆 E : x2/4+y2/3=1 的左、右焦点分别为 F1、F2, 点 A 在椭圆 E 上且在第一象限内, AF2⊥F1F2, 直线 AF1 与椭圆 E 相交于另一点 B.(1) 求 △AF1F2 的周长;(2) 在 x 轴上任取一点 P , 直线 AP 与椭圆 E 的右准线相交于点 Q, 求 ∙的最小值;(3) 设点 M 在椭圆 E 上, 记 △OAB 与 △MAB 的面积分别为 S1, S2, 若 S2 = 3S1, 求点 M 的坐标.

如图,已知椭圆长轴|A1A2 |=6,焦距|F1F2 |=4,过椭圆焦点F1作一直线,交椭圆于两点M,N,设∠F2F1M=α(0≤α<π),当α取什么值时,|MN|等于椭圆短轴的长?

设F1,F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点.已知P,F1,F2是一个直角三角形的上顶点,且|PF1|>|PF2|,求|PF1|/|PF2| 的值.

已知椭圆x2/2+y2=1的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A,B两点,点C在右准线l上,且BC//x轴.求证直线AC经过线段EF的中点.

已知F1,F2是椭圆C:x2/9+y2/4=1的两个焦点,点M在C上,则|MF1|∙|MF2|的最大值为【 】

从一抛物线之焦点引各切线之垂线,试求其垂足之轨迹.