已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.
(1) 求 C1 的离心率;
(2) 若C1的四个顶点到C2的准线距离之和为12, 求 C1 与 C2 的标准方程.
已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.
(1) 求 C1 的离心率;
(2) 若C1的四个顶点到C2的准线距离之和为12, 求 C1 与 C2 的标准方程.
(1) 由已知可设 C2 的方程为 y2 = 4cx, 其中 c = .不妨设 A, C 在第一象限, 由题设得 A, B 的纵坐标分别为 b2/a, −b2/a; C, D 的纵坐标分别为 2c, −2c.故 |AB| = (2b2)/a , |CD| = 4c.由 |CD| = 4/3|AB| 得 4c = (8b2)/3a , 即 3 × c/a = 2 – 2(c/a)2, 解得 c/a = −2(舍去), c/a = ...
查看完整答案已知椭圆C:x²/3+y²=1的左、右焦点分别为F1,F2,直线y=x+m与C交于A,B两点,若△F1AB的面积是△F2AB面积的2倍,则m=【 】
如图,在面积为1的△PMN中,tanM=1/2,tanN=-2.建立 适当的坐标系,求出以M,N为焦点且过点P的椭圆方程.
如果方程x2 + ky2 = 2表示焦点在y轴上的椭圆,那么实数k的取值范围是【 】
椭圆C与椭圆(x-3)2/9+(y-2)2/4=1关于直线x+y=0对称,椭圆C的方程是【 】
椭圆x2/12+y2/3=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1 |是|PF2 |的【 】
设椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F1右准线为l1.若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是________.
椭圆x2/9+y2/4=1的焦点为F1,F2,点P为其上的动点.当∠F1PF2为钝角时,点P横坐标的取值范围是____________.
已知椭圆C的焦点分别为F1(-2,0)和F2(2,0),长轴长为6,设直线y=x+2交椭圆C于A,B两点,求线段AB的中点坐标.
若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率为【 】
设F1,F2为椭圆x2/9+y2/4=1的两个焦点,P为椭圆上的一点.已知P,F1,F2是一个直角三角形的上顶点,且|PF1|>|PF2|,求|PF1|/|PF2| 的值.
于正东正南甲乙二地,测得某山之仰角为 45°及 30°,今甲乙两地之距离为2400 尺,求山高.
求过直线 2x -y+4 =0 与圆 x² +y² + 2x -4y +1 = 0之二交点并点(1,1)之圆之方程式.
设圆 x² +y² = a²交横轴于 A、B 二点,自圆上任意一点 Q 作切线,自 A 作直线垂直于切线与 BQ 交于 P,求 P之轨迹.
求原点平移至(2,-5)后,曲线7x²+8y²-28x+80y+172=0之方程式.
设有一三角形ABC:假定A及B两顶为固定不移,其他一C在AC²+BC²=2/5 AB²之条件下运动,则其轨迹为何如?
两树相距 50 尺,在此树距地 5 尺处观他树之树顶与树根适成 90°之角,又观他树顶之仰角为 60°,求他树之高.
求已知圆 x²+y² - 6x +4y = 12 之两切方程式,与一已知线 4x + 3y +5=0平行.