设于椭圆上之 M(acosΦ,bsinΦ) 点,引与圆心 O之联线 OM,再由 M 点引正交于椭圆长轴之线 MP,复由 P引与 OM 正交之线 PQ.
(1).求当 M 点沿圆线移动时 Q 点之轨迹.
(2).讨论此轨迹之形状,并绘图以明之.
设于椭圆上之 M(acosΦ,bsinΦ) 点,引与圆心 O之联线 OM,再由 M 点引正交于椭圆长轴之线 MP,复由 P引与 OM 正交之线 PQ.
(1).求当 M 点沿圆线移动时 Q 点之轨迹.
(2).讨论此轨迹之形状,并绘图以明之.
暂无答案
设S为抛物线y2=4x的焦点,过点P(-2,1)做抛物线的切线,切点分别为P1与P2,线段SP1上的点Q1与线段SP2上的点Q2满足PQ1⊥SP1,PQ2⊥SP2,则以下说法正确的是【 】
于双曲线4/3 (x-2)2-(y+1)2=1中,已知其一直径之斜度为1/3,试求此直径及其共轭直径之方程式,若以此二共轭直径为新坐标轴,试求双曲线之新方程式.
F 点为抛物线 y² = 16x 之焦点,O 点为顶点,P 点为抛物线上任一点,PQ 为切线,自 O 点至 PQ 线之垂线与 FP 线相交 R 点,求 R 点之轨迹之方程式并绘其图形.
已知双曲线C的焦点为(-2,0)和(2,0),离心率为√2,则C的方程为____________.
设 F1, F2 是双曲线 C : x2 −y2/3 = 1 的两个焦点, O 为坐标原点, 点 P 在 C 上且 |OP| = 2, 则 △PF1F2 的 面积为【 】
设双曲线 C : x2/a2 − y2/b2 = 1 (a > 0, b > 0) 的一条渐近线为 y = x, 则 C 的离心率为______.
已知点 O(0, 0), A(−2, 0), B(2, 0). 设点 P 满足 |PA| − |PB| = 2, 且 P 为函数 y=3 图像上的点,则 |OP| =【 】
已知方程 kx2+y2=4 ,其中k为实数。对于不同范围的k值,分别指出方程所代表图形的类型 ,并画出显示其数量特征的草图.
如图,已知椭圆长轴|A1A2 |=6,焦距|F1F2 |=4,过椭圆焦点F1作一直线,交椭圆于两点M,N,设∠F2F1M=α(0≤α<π),当α取什么值时,|MN|等于椭圆短轴的长?
求经过定点M(1,2),以y轴为准线,离心率为1/2的椭圆的左顶点的轨迹方程.
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.
已知点P在直线x=2上移动,直线l通过原点且与OP垂直,通过点A(1,0)及点P的直线m和直线l交于点Q.求点Q的轨迹方程,并指出该迹的名称和它的焦点坐标.
椭圆9x2 + 16y2 = 144的离心率为______.
已知椭圆x2/a2 +y2/b2 =1(a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明:-(a2 - b2)/a < x0 < (a2 - b2)/a.
设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.
已知向量a,b满足|a|=1,|b|=√3,|a-2b|=3,则a⋅b=【 】
已知向量a=(2,1),b=(-2,4),则|a-b|=【 】
若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=【 】
在△ABC中,AC=3,BC=4,∠C=90°.P为△ABC所在平面内的动点,且PC=1,则(PA)⋅(PB)的取值范围是【 】
设点P在单位圆的内接正八边形A1A2…A8的边A1A2上,则(PA1)2+(PA2)2+⋯+(PA8)2的取值范围是_______.
已知平面直角坐标系中的点集Q={(x,y)|(x-k)2+(y-k2)2=4|k,k∈z}.①存在直线l与Q没有公共点,且Q中存在两点在l的两侧;②存在直线l经过Q中的无数个点则【 】
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被C截得的弦长为2√3时,a=【 】