问答题(1946年政治大学

求原点平移至(2,-5)后,曲线7x²+8y²-28x+80y+172=0之方程式.

答案解析

暂无答案

讨论

已知正方形 ABCD 的边长为 2, 点 P 满足 =1/2(+) ,则|| =______ ; · =______ .

如图, 在四边形 ABCD 中, ∠B = 60º, AB = 3, BC = 6, 且 =λ, ·= -3/2, 则实数 λ 的值为_____, 若 M, N 是线段 BC 上的动点, 且 || = 1, 则· 的最小值为______.

设 k ∈ N∗, 已知平面向量 a1, a2, b1, b2, · · · , bk 两两不同, |a1 − a2| = 1. 对于任意 i = 1, 2, j = 1, 2, 3,· · · , k, |ai − bj| ∈ {1, 2}, 则 k 的最大值是_______________.

已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.

如图, 已知椭圆 C1: x2/2+y2=1, 抛物线 C2: y2=2px (p > 0), 点 A 是椭圆 C1 与抛物线 C2 的交点, 过点 A的直线 l 交椭圆 C1 于点 B, 交抛物线 C2 于 M (B, M 不同于 A).(I) 若 p=1/16 , 求抛物线 C2 的焦点坐标;(II) 若存在不过原点的直线 l 使 M 为线段 AB 的中点, 求 p 的最大值.

在 △ABC 中, AB = 4, AC = 3, ∠BAC = 90º, D 在边 BC 上, 延长 AD 到 P , 使得 AP = 9. 若=m+(3/2-m) (m 为常数), 则 CD 的长度是__________.

抛物线的方程是y2=2x,有一个半径为1的圆,圆心在x上运动.问这个圆运动到什么位置时,圆与抛物线在交点处的切线互相垂直?(注:设P(x0,y0)是抛物线y2=2px上一点,则抛物线在P点处的切线斜率是p/y0 )

抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与抛物线x2=2qy相切.

如图,已知椭圆长轴|A1A2 |=6,焦距|F1F2 |=4,过椭圆焦点F1作一直线,交椭圆于两点M,N,设∠F2F1M=α(0≤α<π),当α取什么值时,|MN|等于椭圆短轴的长?

求经过定点M(1,2),以y轴为准线,离心率为1/2的椭圆的左顶点的轨迹方程.