问答题(1949年武汉大学

判别曲线=0的性质.

答案解析

暂无答案

讨论

已知椭圆方程x2/a2 +y2/b2 =1,F为右焦点,A为右顶点,B为上顶点,|BF|/|AB| =√3/2.(1)求椭圆的离心率e;(2)已知直线l与椭圆有唯一交点M,直线l交y轴于点N,|OM|=|ON|,∆OMN的面积为√3,求椭圆的标准方程.

已知抛物线y2=4√5 x,F1,F2分别是双曲线x2/a-y2/b=1(a>0,b>0)的左右焦点,抛物线的准线过双曲线的左焦点F1,与双曲线的渐近线交于点A,,若∠F1 F2 A=π/4,则双曲线的标准方程是【 】

英:Find the equations to the tangents to the ellipse 3x²+ y² = 3, inclined at angle of 45° to the axis of x.汉:求椭圆 3x²+y²=3之与x轴夹角为 45°的切线方程.

英:Find the equation to the normal to hyperbola x2/a2 -y2/b2 =1 at the point (x1,y1) . 汉:求双曲线x2/a2 -y2/b2 =1在点(x1,y1)处的法线方程.

The point of contact of a tangent to an hyperbola is midway between the points in which the tangent meets the asymptotes.

Find the locus of the point of intersection of lines drawn through the foci of an ellipse parallel to conjugate diameters.

双曲线之切线与渐近线相交,试证切点移动其所包围之三角形之面积为常数.

Find the area of the triangle out off from the first quadrant by the tangent to the ellipse 2x² + 3y² = 14 at the point (1, 2).

Reduce the hyperbola 4x² - 9y² - 24x + 36y - 36 = 0 to standard form.

双曲线x²/100-y²/64=1的焦点为S,S1;,其中S位于x正半轴上. P为双曲线在第一象限上的一点,记∠SPS1=α,α<π/2. 过点S且斜率与双曲线在P点切线相同的直线,与直线S1 P交于P1点,记P到直线SP1的距离为δ,β=S1 P.则不超过βδ/9 sin⁡α/2的最大整数为______.