问答题(1949年武汉大学

判别曲线=0的性质.

答案解析

暂无答案

讨论

设 P 为圆上之任意点,且 F 为一焦点,证明以 FP 及椭圆之长轴各为直径之圆必相内切.

设有等边双曲线 (equilateral hyperbola) xy =1.今于其上取三点 A,B,C 联成三角形,而 A,B,C 之横标 (abscissa) 依次为 a,b,c.(1).求证过 △ABC 三顶点作向对边之垂线会于一点(2).求出三垂线之交点坐标,并证明此交点在双曲线上.

设于椭圆上之 M(acosΦ,bsinΦ) 点,引与圆心 O之联线 OM,再由 M 点引正交于椭圆长轴之线 MP,复由 P引与 OM 正交之线 PQ.(1).求当 M 点沿圆线移动时 Q 点之轨迹.(2).讨论此轨迹之形状,并绘图以明之.

证明自椭圆二焦点至其任意切线之垂直距离,其乘积为一常数.

试求椭圆中诸平行弦之中点轨迹的方程式.

Show that the tangent to a hyperbola makes equal angles with the focal radii drawn to the point of tangency.

Find the locus of point which moves so that the sum of its distance from the points (-7, 4) and (9, 4) is always 20 units. Determine the center, foci, vertices,axis and eccentricity. Locate all points.

求圆锥曲线 2x²-8xy - 4y² - 4y +1=0 之焦点及准线.

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 设 M 是 C1 与 C2 的公共点. 若 |MF | = 5, 求 C1 与 C2 的标准方程.

已知椭圆 C1 : x2/a2 + y2/b2 = 1(a > b > 0) 的右焦点 F 与抛物线 C2 的焦点重合. C1 的中心与 C2 的顶点重合,过 F 且与 x 轴垂直的直线交 C1 于 A, B 两点, 交 C2 于 C, D 两点. 且 |CD| = 4/3|AB|.(1) 求 C1 的离心率;(2) 若C1的四个顶点到C2的准线距离之和为12, 求 C1 与 C2 的标准方程.