问答题(1931年上海交通大学

Find the locus of the point of intersection of lines drawn through the foci of an ellipse parallel to conjugate diameters.

答案解析

暂无答案

讨论

已知F1,F2为椭圆C:x2/16+y2/4=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2 |,则四边形PF1QF2的面积为________.

设B是椭圆C:x2/a2 +y2/b2 =1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率取值范围是【 】

设B是椭圆C:x2/5+y2=1的上顶点,点P在C上,则|PB|的最大值为【 】

已知椭圆E:x2/a2 +y2/b2 =1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.

已知Γ:x2/2+y2=1,F1,F2是其左、右焦点,直线l过点P(m,0)(m≤-),交椭圆于A,B两点,且A,B在x轴上方,点A在线段BP上.(1)若B是上顶点,||=||,求m的值;(2)若∙=1/3,且原点O到直线l的距离为4/15,求直线l的方程;(3)证明:对于任意m<-,使得//的直线有且仅有一条.

已知椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F,上顶点为B,离心率为(2√5)/5,且|BF|=√5.(1)求椭圆的方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P,若MP//BF,求直线l的方程.

求椭园25x2+9y2=100的长轴和短轴的长、焦点坐标,并且画出它的图像。

已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。

已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.

已知椭圆x2/16+y2/4=1的左右焦点分别为F1与F2,点P在直线l:x-√3 y+8+2√3=0上.当∠F1 PF2取最大值时,比|PF1 |/(|PF2 |)的值为____________.

已知椭圆C:x2/a2 +y2/b2 =1(a>b>0),C的上顶点为A,两个焦点为F1,F2,离心率为1/2.过F1且垂直于AF2的直线与C交于D,E两点,|DE|=6,则△ADE的周长是________________.

已知椭圆x2/6+y2/3=1,直线l与椭圆在第一象限交于A,B两点,与x轴,y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2√3,则直线l的方程为___________.

椭圆C:x2/a2 +y2/b2 =1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为1/4,则C的离心率为【 】

已知椭圆C:x2/a2 +y2/b2 =1(a>b>0)的离心率为1/3,A1,A2分别为C的左、右顶点,B为C的上顶点.若(BA1)⋅(BA2)=-1,则C的方程为【 】

已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),B(3/2,-1)两点.(1)求E的方程;(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足(MT)→=(TH)→.证明:直线HN过定点.

已知椭圆: E:x2/a2 +y2/b2 =1(a>b>0)的一个顶点为A(0,1),焦距为2√3.(1)求椭圆E的方程;(2)过点P(-2,1)作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当|MN|=2时,求k的值.

已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E,F,G分别在BC,CD,DA上移动,且BE/BC=CF/CD=DG/DA,P为GE与OF的交点(如图).问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.

设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】

椭圆x2/12+y2/3=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1 |是|PF2 |的【 】

设椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F1右准线为l1.若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是________.