已知a→=(3,4),b→=(1,0),c→=a→+tb→,若<a→,c→>=<b→,c→>,则t=【 】
A、-6
B、-5
C、5
D、6
已知a→=(3,4),b→=(1,0),c→=a→+tb→,若<a→,c→>=<b→,c→>,则t=【 】
A、-6
B、-5
C、5
D、6
C
【解析】
由已知有c→=(3+t,4),cos<a→,c→>=cos<b→,c→>,即(9+3t+16)/5|c→| =(3+t)/|c→| ,解得t=5.
已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=【 】
记△ABC的内角A,B,C的对边分别为a,b,c,已知cosA/(1+sinA )=(sin2B)/(1+cos2B).(1)若C=2π/3,求B;(2)求(a2+b2)/c2 的最小值.
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
记Sn为数列{an }的前n项和,已知a1=1,{Sn/an }是公差为1/3的等差数列.(1)求{an}的通项公式;(2)证明:1/a1 +1/a2 +⋯+1/an <2.
设坐标原点为O,抛物线y2=2x与过焦点的直线交于A,B两点,则∙=【 】
已知O为坐标原点,点P1(cosα,sinα),P2(cosβ,-sinβ),P3(cos(α+β),sin(α+β) ),A(1,0),则【 】
已知向量=(3,1),=(1,0),=+k,若⊥,则k=________.
若向量,满足||=3,| - |=5,∙=1,则||=________.
已知向量=(1,3),=(3,4),若(-λ)⊥,则λ=________.
已知向量=(2,5),=(λ,4),若//,则λ=_______.
已知a=(2,1),b=(2,-1),c=(0,1),则(a+b)·c=______;a·b=______.
如图,正方形ABCD的边长为3,则∙=__________.
在边长为1的等边三角形ABC中,D为线段BC上的动点,DE⊥AB且交AB于点E,DF//AB交AC于点F,则|2+|的值为__________;(+)∙最小值为__________.
已知平面向量,,(≠0)满足| |=1,| |=2,∙=0,(- )∙=0.记向量在,方向上的投影分别为x,y,-在方向的投影为z,则x2+y2+z2的最小值为________.
如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a=【 】
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.
直线x + y - 2 = 0截圆x2 + y2 = 4得到的劣弧所对的圆心角为【 】
过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是【 】
过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是【 】
设A,B是x轴上的两点,点P的横坐标为2且|PA|=|PB|.若直线PA的方程为x-y+1=0,则直线PB的方程是【 】
已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.
已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则【 】
记△ABC的内角A,B,C的对边分别为a,b,c,已知b2=ac,点D在边AC上,BDsin∠ABC=asinC.(1)证明:BD=b;(2)若AD=2DC,求cos∠ABC.