单项选择(2001年全国新课程

设坐标原点为O,抛物线y2=2x与过焦点的直线交于A,B两点,则=【 】

A、3/4

B、-3/4

C、3

D、-3

答案解析

B

讨论

在平地上一点 A,测得某山顶 P 之仰角 (elevation) 为 60°,自 A 点,在平地上,向山麓前进 800 尺至 B 点.自 B 点沿一与平地倾斜 30°之斜坡,再向山顶前进 800 尺,至 C 点,在 C 点测得山顶 P之仰角为 75°.若 A,B,C,P四点在一垂直平面内,求此山之高.

设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.

已知二圆C1:x²+y²-6x=0,C2:x²+y²-4=0,求通过C1,C2之两交点及另一点(2,-2)之圆的方程式.

A tower of 20.7 feet high stands at the edge of the water on a bank of a river. From a point directly opposite to the tower on the other side of the river above the water, the angle of elevation of the top of the tower is 27°17' and the angle of depression of the image of its top in the water is 38°12'. Find the width of the river.

Two towers, A and B, on the shore of a lake can be observed from only one point C on the opposite shore. The lines joining the bases of two towers subtend anangle of 63°42' at C. The heights of the towers are 132 feet and 89 feet, and the angle of elevation of the tops as seen from C are 8°13' and 7°21' respectively.Find the distance AB.

Find the distance from the point (-1, -4) to the straight line which is drawn through (-2,6) and the perpendicular to the line joining (3,6) and (-5,-1).

某人在高处望见正东海面上一船首,其俯角为 30°,当船向正南行 a 里后,求得船首俯角为 15°,问此人之视点高出海面若干?

求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.

一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.

若 kxy - 8x + 9y - 12 = 0 表示二条直线,求 k 值及此二直线所夹的角.