问答题(1949年天津大学

某人在高处望见正东海面上一船首,其俯角为 30°,当船向正南行 a 里后,求得船首俯角为 15°,问此人之视点高出海面若干?

答案解析

暂无答案

讨论

设一四面体有一三面角与另一四面体的一三面角对称,求证:其体积之比等于此两三面角三棱分别的乘积之比.

Find the locus of point which moves so that the sum of its distance from the points (-7, 4) and (9, 4) is always 20 units. Determine the center, foci, vertices,axis and eccentricity. Locate all points.

Show that the tangents to the parabola y² = 4px at the extremities of the latus return are perpendicular and meet at the intersection of the directrix with a-axis.

Show that the tangent to a hyperbola makes equal angles with the focal radii drawn to the point of tangency.

Find the distance from the point (-1, -4) to the straight line which is drawn through (-2,6) and the perpendicular to the line joining (3,6) and (-5,-1).

Two towers, A and B, on the shore of a lake can be observed from only one point C on the opposite shore. The lines joining the bases of two towers subtend anangle of 63°42' at C. The heights of the towers are 132 feet and 89 feet, and the angle of elevation of the tops as seen from C are 8°13' and 7°21' respectively.Find the distance AB.

The sides of a triangle are 149,163 and 222. To find(1) The area of the triangle.(2) The radius of the inscribed circle.(3) The angles of the triangle.

A tower of 20.7 feet high stands at the edge of the water on a bank of a river. From a point directly opposite to the tower on the other side of the river above the water, the angle of elevation of the top of the tower is 27°17' and the angle of depression of the image of its top in the water is 38°12'. Find the width of the river.

The base of a right circular cone has a diameter of 25 feet and its slant height is 40 feet. The surface of the cone is cut along a straight line from its vertex to a point on the base, and the surface is then spread out flat to form a sector of a circle. Find the angle of its sector in degrees.

Solve secx - cotx = cscx - tanx

外国船只,除特许者外,不得进人离我海岸线 d海里的区域.设 A 及 B 是我们的观测站 , A 及 B 间的距离为s海里,海岸线是过 A 、B 的直线. 一外国船只在P点.在 A 站测得∠BAP=α ,同时在 B 站测得∠ABP=β,问及满足什么简单的三角函数值不等式,就应当向此未经特许的外国船只发出警告,命令退出我海域?

设等腰△OAB的顶角为 2θ,高为h.(1) 在△OAB内有一动点P,到三边OA,OB,AB的距离分别为|PD|,|PF|,|PE|,并且满足关系式|PD|∙|PF|=|PE|2,求P点的轨迹.(2) 在上述轨迹中定出点P的坐标,使得|PD|+|PE|=|PF|.

某人要作一个三角形,要求它的三条高的长度分别是1/13 ,1/11 ,1/5 ,则此人将【 】

已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.

记△ABC的内角A,B,C的对边分别为a,b,c,已知b2=ac,点D在边AC上,BDsin∠ABC=asinC.(1)证明:BD=b;(2)若AD=2DC,求cos∠ABC.

在△ABC中,已知B=120°,AC=,AB=2,则BC=【 】

记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sin⁡C sin⁡(A-B)=sin⁡Bsin⁡(C-A).(1)若A=2B,求C;(2)证明:2a2=b2+c2.

在△ABC中,sin2C=√3 sinC.(1)求∠C;(2)若b=6,且△ABC的面积为6√3,求△ABC的周长.

我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.

在△ABC中,角A,B,C所对的边分别为a,b,c.已知4a=√5 c,cos⁡C=3/5.(1)求sin⁡A的值;(2)若b=11,求△ABC的面积.

抛物线的方程是y2=2x,有一个半径为1的圆,圆心在x上运动.问这个圆运动到什么位置时,圆与抛物线在交点处的切线互相垂直?(注:设P(x0,y0)是抛物线y2=2px上一点,则抛物线在P点处的切线斜率是p/y0 )

抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与抛物线x2=2qy相切.

若动点P到F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为___________.

如图所示,直线x=2 与双曲线 Γ: x2/4 - y2=1的渐进线交于E1, E2两点,记=e1,=e2.任取双曲线Γ上的点P,若 = ae1+be2 (a,b∈R),则a,b满足的一个等式是_______.

求曲线y2=-16x+64的焦点.

过点M(-1,0)的直线l1与抛物线y2=4x交于P1,P2两点.记:线段P1P2的中点这P;过点P和这个抛物线的焦点F的直线为l2;l1的斜率为k.试把直线l2的斜率与直线l1的斜率之比表示为k的函数,并指出这个函数的定义域、单调区间,同时说明在每一单调区间上它是增函数还是减函数.

在抛物线y=4x2上求一点,使该点到直线y=4x-5的距离最短.

定长为3的线段AB的两个端点在抛物线y2=x上移动,记线段AB的中点为M.求点M到y轴的最短距离,并求此时点M的坐标.

自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.

已知直线l:x - ny = 0(n∈N);圆M:(x+1)2 + (y+1)2 = 1;抛物线Φ:y=(x-1)2.又l与M交于点A,B;l与Φ交于点C,D.求⁡|AB|2/|CD|2.