单项选择(2001年全国新课程

若向量a=(1,1),b=(1,-1),c=(-1,2),则c=【 】

A、-1/2 a+3/2 b

B、1/2 a-3/2 b

C、3/2 a-1/2 b

D、-3/2 a+1/2 b

答案解析

B

讨论

若Sn是数列{an }的前n项和.且Sn=n2,则{an }是【 】

函数y=3sin(x/2+π/3)的周期、振幅依次是【 】

设f(x)是定义R上的偶函数,其图像关于直线x=1对称,对任意x_1,x_2∈[0,1/2],都有f(x1+x2 )=f(x1)f(x2),且f(1)=a>0.(Ⅰ)求f(1/2)及f(1/4);(Ⅱ)证明f(x)是周期函数;(Ⅲ)记an=f(2n+1/2n),求 (lnan).

从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投人将比上年减少1/5.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1/4.( I )设n年内(本年度为第一年)总投人为an万元,旅游业总收人为bn万元.写出an,bn的表达式.(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?

已知i,m,n是正整数,且1<i≤m<n.(Ⅰ)证明 niAim<miAin;(Ⅱ)证明 (1+m)n>(1+n)m.

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.

已知复数z1=i⁡(1-i)3.(Ⅰ)求argz1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z - z1|的最大值.

如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=1/2. (I)求四棱锥S-ABCD的体积;(Ⅱ)求面SCD与面SBA所成二面角的正切值.

圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.

设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=________.