单项选择(2001年全国新课程

若Sn是数列{an }的前n项和.且Sn=n2,则{an }是【 】

A、等比数列,但不是等差数列

B、等差数列,但不是等比数列

C、等差数列,而且也是等比数列

D、既非等比数列又非等差数列

答案解析

B

讨论

函数y=3sin(x/2+π/3)的周期、振幅依次是【 】

设f(x)是定义R上的偶函数,其图像关于直线x=1对称,对任意x_1,x_2∈[0,1/2],都有f(x1+x2 )=f(x1)f(x2),且f(1)=a>0.(Ⅰ)求f(1/2)及f(1/4);(Ⅱ)证明f(x)是周期函数;(Ⅲ)记an=f(2n+1/2n),求 (lnan).

从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投人将比上年减少1/5.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1/4.( I )设n年内(本年度为第一年)总投人为an万元,旅游业总收人为bn万元.写出an,bn的表达式.(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?

已知i,m,n是正整数,且1<i≤m<n.(Ⅰ)证明 niAim<miAin;(Ⅱ)证明 (1+m)n>(1+n)m.

设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.

已知复数z1=i⁡(1-i)3.(Ⅰ)求argz1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z - z1|的最大值.

如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=1/2. (I)求四棱锥S-ABCD的体积;(Ⅱ)求面SCD与面SBA所成二面角的正切值.

圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为__________.

设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=________.

双曲线x2/9 - y2/16=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为________.

设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.

信息熵是信息论中的一个重要概念. 设随机变量 X 所有可能的取值为 1, 2, … , n, 且 P (X = i) = pi >0 (i = 1, 2, …, n), =1, 定义 X 的信息熵 H(X) = −log2 pi.【 】

将数列 {2n − 1} 与 {3n − 2} 的公共项从小到大排列得到数列 {an}, 则 {an} 的前 n 项和为 __________.

已知 {an} 为等差数列, {bn} 为等比数列, a1 = b1 = 1, a5 = 5(a4 − a3), b5 = 4(b4 − b3).(I) 求 {an} 和 {bn} 的通项公式;(II) 记 {an} 的前 n 项和为 Sn, 求证: SnSn+2 < Sn+12 (n ∈ N∗);(III) 对任意的正整数 n, 设 cn = .求数列 {cn} 的前 2n 项和.

已知有限数列 {an} 项数为 m, 若其满足: |a1 − a2| ⩽ |a1 − a3| ⩽ · · · ⩽ |a1 − am|, 则称数列 {an} 满足性质 P .(1) 判断数列 3, 2, 5, 1 和数列 4, 3, 2, 5, 1 是否具有性质 P ;(2) 已知 a1 = 1, 公比为 q 的等比数列, 项数为 10, 具有性质 P , 求 q 的取值范围;(3) 若 an 是 1, 2, 3, · · · , m (m ⩾ 4) 的一个排列, bk = ak+1 (k = 1, 2, 3 · · · , m − 1), 数列 {an}, {bn} 都具有性质 P , 求所有满足条件的 {an}.

已知数列 {an}, {bn}, {cn} 中, a1 = b1 = c1 = 1, cn+1 = an+1 − an, cn+1=bn/bn+2 ∙cn (n ∈ N∗).(I) 若数列 {bn} 为等比数列, 且公比 q > 0, 且 b1 + b2 = 6b3, 求 q 的值及数列 {an} 的通项公式;(II) 若数列 {bn} 为等差数列, 且公差 d > 0, 证明: c1 + c2 + … + cn < 1 +1/d , n ∈ N∗.

试问数列:lg100,lg⁡(100sinπ/4),lg⁡(100sin2π/4),⋯,lg⁡(100sinn-1π/4),前多少项的和的值最大?并求出这大值(这里取lg2=0.301)

已知以AB为直径的半圆有一个内接正方形CDEF,其边长为1(如图).设AC=a,BC=b,作数列u1=a-b,u2=a2-ab+b2,u3=a3-a2b+ab2-b3,...uk=ak-ak-1b+ak-2b2-...+(-1)kbk;求证:un=un-1+un-2 (n≥3).

已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10 )的值是________.

在各项均为正数的等比数列{an}中,若a5a6 = 9,则log3a1 + log3a2 + ... + log3a10 =【 】