已知数列 {an}, {bn}, {cn} 中, a1 = b1 = c1 = 1, cn+1 = an+1 − an, cn+1=bn/bn+2 ∙cn (n ∈ N∗).
(I) 若数列 {bn} 为等比数列, 且公比 q > 0, 且 b1 + b2 = 6b3, 求 q 的值及数列 {an} 的通项公式;
(II) 若数列 {bn} 为等差数列, 且公差 d > 0, 证明: c1 + c2 + … + cn < 1 +1/d , n ∈ N∗.
已知数列 {an}, {bn}, {cn} 中, a1 = b1 = c1 = 1, cn+1 = an+1 − an, cn+1=bn/bn+2 ∙cn (n ∈ N∗).
(I) 若数列 {bn} 为等比数列, 且公比 q > 0, 且 b1 + b2 = 6b3, 求 q 的值及数列 {an} 的通项公式;
(II) 若数列 {bn} 为等差数列, 且公差 d > 0, 证明: c1 + c2 + … + cn < 1 +1/d , n ∈ N∗.
(I) 由 b1 + b2 = 6b3 得 1 + q = 6q2, 解得 q=1/2 . 由 cn+1 = 4cn 得 cn = 4n−1. 由 an+1 − an = 4n−1 得an=a1+1+4+⋯+4n-2=(4n-1+2)/3 .(II) 由cn+1=bn/bn+2 cn 得...
查看完整答案在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.
已知单位向量 e1, e2 满足|e1-e2 |≤, 设 a = e1 + e2, b = 3e1 + e2, 向量 a, b 的夹角为 θ, 则 cos2θ的最小值为_______.
已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.
已知圆锥的侧面积 (单位: cm2) 为 2π, 且它的侧面展开图是一个半圆, 则这个圆锥的底面半径 (单位: cm) 为_______.
已知 tanθ = 2, 则 cos2θ = _______, tan(θ − π/4) = _______.
二项展开式 (1 + 2x)5 = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5, 则 a4 = _______, a1 + a3 + a5 = _______.
我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.
有半径为R之圆C,于其直径AB上取其半B1 B为直径作一圆C1,又取B1 B之半B2 B为直径作一圆C2,更取B2 B之半B3 B为直径作一圆C3,如是无限推之,求C1,C2,C3,⋯无穷个圆周之和.
Find the sum of n terms of the series whose nth term is 3(4n+4n²)-5n³.
Find the general term and the sum ofn terms of the series -3,-1,11,39,89,167.
Find the sum of the geometical series -2,,-1/3 to 6 terms.
设a1,a2,a3,⋯,an成调和级数,试证:a1 a2+a2 a3+a3 a4+⋯+an-1 an=(n-1) a1 an
求2+22+23+⋯+2n之和,并利用之以证1+3×2+5×22+⋯+(2n-1)∙2n-1=3-2n+(n-1) 2n+1.
问θ为何种数值时,sinθ+sin2θ+⋯+sinnθ+⋯成一收敛级数.
若a1,a2,⋯,an为已知正数,试求atctan(a1-a2)/(1+a1 a2)+atctan(a2-a3)/(1+a2 a3)+⋯+atctan(an-1-an)/(1+an-1 an)的值.
级数1!/102 -2!/103 +3!/104 -⋯是收敛的还是发散的?
已知数列{an}满足an+1=1/4 (an-6)³+6(n=1,2,3,⋯),则【 】
令S=m²n/(2m(n2m+m2n)),则[100S]=________.
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.