Find the sum of the geometical series -2,,-1/3 to 6 terms.
设正数数列{an },{bn}满足:a1=b1=1,bn=an bn-1-1/4(n≥2).求4+1/(a1 a2⋯ak )的最小值,其中m是给定的正整数.
在各项均为正数,且满足下列条件的数列{an}中,a9可能的最大值和最小值分别为M和m,则M+m的值为【 】(1) a7=40(2)对于任意正整数n,an+2=
数列{an },{bn}满足(3ak+5)=55,(ak+bk)=32,求bk 的值.
有半径为R之圆C,于其直径AB上取其半B1 B为直径作一圆C1,又取B1 B之半B2 B为直径作一圆C2,更取B2 B之半B3 B为直径作一圆C3,如是无限推之,求C1,C2,C3,⋯无穷个圆周之和.
已知数列{an}满足an+1=1/4 (an-6)³+6(n=1,2,3,⋯),则【 】
数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】