问答题(1931年上海交通大学

Find the equation of the projection of the linex=z+2,y=2z-4 upon the plane x+y- z = 0.

答案解析

暂无答案

讨论

如图, 在长方体 ABCD − A1B1C1D1 中, 点 E, F 分别在棱 DD1, BB1 上, 且 2DE = ED1, BF = 2FB1.(1) 证明: 当 AB = BC 时, EF ⊥ AC;(2) 证明: 点 C1 在平面 AEF 内.

如图, 在长方体 ABCD − A1B1C1D1 中, 点 E, F 分别在棱 DD1, BB1 上, 且 2DE = ED1, BF = 2FB1.(1) 证明: 点 C1 在平面 AEF 内;(2) 若 AB = 2, AD = 1, AA1 = 3, 求二面角 A − EF − A1 的正弦值.

如图, 在正方体 ABCD − A1B1C1D1 中, E 为 BB1 的中点.(I) 求证: BC1 // 平面 AD1E;(II) 求直线 AA1 与平面 AD1E 所成角的正弦值.

如图, 在三棱柱 ABC − A1B1C1 中, CC1⊥平面 ABC, AC ⊥ BC, AC = BC = 2, CC1 = 3, 点 D, E 分别在棱 AA1 和棱 CC1 上, 且 AD = 1, CE = 2, M 为棱 A1B1 的中点.(I) 求证: C1M ⊥ B1D;(II) 求二面角 B − B1E − D 的正弦值;(III) 求直线 AB 与平面 DB1E 所成角的正弦值.

在三棱柱 ABC − A1B1C1 中, AB ⊥ AC, B1C ⊥ 平面 ABC, E, F 分别是 AC, B1C 的中点.(1) 求证: EF // 平面 AB1C1;(2) 求证: 平面 AB1C ⊥ 平面 ABB1.

直升飞机上一点 P 在地平面 M 上的正射影是 A .从P看地平面上一物体 B (不同于 A ) ,直线P B 垂直于飞机窗玻璃所在的平面 N(如图).证明:平面 N 必与平面 M 相交,且交线 l 垂直于 AB.

如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.

如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为面AC内的一点,Q为面BD内的一点.已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上,又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a.求线段PQ的长.

如图,已知二面角α-AB-β的平面角是锐角,C是平面α内的一点(它不在棱AB上),点D是点C在平面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么【 】.

如图,四棱锥S-ABCD的底面是边长为1的正方形,侧棱SB垂直于底面,并且SB=,用α表示∠ASD,求sinα的值.

日晷是中国古代用来测定时间的仪器, 利用与晷面垂直的晷针投射到晷面的影子来测定时间. 把地球看成一个球 (球心记为 O) , 地球上一点 A 的纬度是指 OA 与地球赤道所在平面所成角, 点 A 处的水平面是指过点 A 且与 OA 垂直的平面. 在点 A 处放置一个日晷, 若晷面与赤道所在平面平行, 点 A 处的纬度为北纬 40°, 则晷针与点 A 处的水平面所成角为【 】

如图, 三棱台 ABC − DEF 中, 平面 ACFD ⊥ 平面 ABC, ∠ACB = ∠ACD = 45°, DC = 2BC.(I) 证明: EF ⊥ DB;(II) 求 DF 与面 DBC 所成角的正弦值.

在120°的二面角P-α-Q的两个面P和Q内,分别有点A和B . 已知点A和点B到棱α的距离分别为2和4,且线段AB=10.(1) 求直线AB和棱α所成的角;(2) 求直线AB和平面Q所成的角.

已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图).求证MNPQ是一个矩形.

两条异面直线,指的是【 】

已知三个平面两两相交,有三条交线.求证这三条交线交于一点或互相平行.

在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF中点. 现沿SE、SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G.那么,在四面体S-EFG中必有【 】

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意一点.求证:平面PAC垂直于平面PBC.

如图,正四棱台中,A'D'所在的直线与BB'所在的直线是【 】

如图,已知圆柱的底面半径是3,高是4,A,B两点分别在两底面的圆周上,并且AB=5,那么直线AB与轴oo'之间的距离等于______.