单项选择(1986年全国统考

在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF中点. 现沿SE、SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G.那么,在四面体S-EFG中必有【 】

A、SG⊥△EFG所在平面

B、SD⊥△EFG所在平面

C、GF⊥△SEF所在平面

D、GD⊥△SEF所在平面

答案解析

A

讨论

设点Q关于平面r➝=-(t+p) i➝+tj➝+(1+p)k➝的对称点为S,其中t,p为实数,i➝,j➝,k➝分别为空间坐标系坐标轴正方向的三个单位向量,若点Q与S的位置矢量分别为10i➝+15j➝+20k➝与αi➝+βj➝+γk➝,则以下说法正确的是【 】

如图, 在长方体 ABCD − A1B1C1D1 中, 点 E, F 分别在棱 DD1, BB1 上, 且 2DE = ED1, BF = 2FB1.(1) 证明: 当 AB = BC 时, EF ⊥ AC;(2) 证明: 点 C1 在平面 AEF 内.

如图, 在正方体 ABCD − A1B1C1D1 中, E 为 BB1 的中点.(I) 求证: BC1 // 平面 AD1E;(II) 求直线 AA1 与平面 AD1E 所成角的正弦值.

如图, 在三棱柱 ABC − A1B1C1 中, CC1⊥平面 ABC, AC ⊥ BC, AC = BC = 2, CC1 = 3, 点 D, E 分别在棱 AA1 和棱 CC1 上, 且 AD = 1, CE = 2, M 为棱 A1B1 的中点.(I) 求证: C1M ⊥ B1D;(II) 求二面角 B − B1E − D 的正弦值;(III) 求直线 AB 与平面 DB1E 所成角的正弦值.

如图,三棱锥A-BCD中,DA=DB=DC,BD⊥CD,∠ADB=∠ADC=60°,E为BC的中点. (1)证明:BC⊥AD;(2)点F满足(EF)→=(DA)→,求二面角D-AB-F的正弦值.

已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图).求证MNPQ是一个矩形.

两条异面直线,指的是【 】

如图,在三棱锥S-ABC中,S在底面上的射影N位于底面的高CD上;M是侧棱SC上的一点,使截面MAB与底面所成的角等于∠NSC,求证:SC垂直于截面MAB.

已知三个平面两两相交,有三条交线.求证这三条交线交于一点或互相平行.

如图,设平面AC和BD相交于BC,它们所成的一个二面角为45°,P为面AC内的一点,Q为面BD内的一点.已知直线MQ是直线PQ在平面BD内的射影,并且M在BC上,又设PQ与平面BD所成的角为β,∠CMQ=θ(0°<θ<90°),线段PM的长为a.求线段PQ的长.

如图所示四面体A-BCD中,AB,BC,BD两两互相垂直,且AB=BC=2,E是AC的中点,异面直线AD与BE所成的角大小为arccos /10,求四面体A-BCD的体积.

在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.(Ⅰ)求证:A'F⊥C'E;(Ⅱ)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用三角函数表示).

求证两两相交而不过同一点的四条直线必在同一平面内.

在直棱柱A1B1C1-ABC中,∠BAC=π/2,AB=AC=AA1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的不动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为【 】

已知正方体ABCD-A1B1C1D1,则【 】

如图,已知正三棱柱ABC-A1B1C1,AC=AA1,E,F分别是棱BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面角F-BC-A的平面角为γ,则【 】

下列五个正方体图形中,l是正方体的一条对角线,点 M,N,P分别为其所在棱的中点,能得出l⊥面MNP的图形的序号是________(写出所有符合要求的图形序号).

已知平面P1:10x+15y+12z-60=0,P2:-2x+5y+4z-20=0.若存在一个四面体,其中两个面分别位于平面P1和P2上,下面哪条直线可能是该四面体的一条棱【 】

Find the equation of the projection of the linex=z+2,y=2z-4 upon the plane x+y- z = 0.

Find the equation of the plane passing through the line (x-x1)/a1 =(y-y1)/b1 =(z-z1)/c1 which is parallel to the (x-x2)/a2 =(y-y2)/b2 =(z-z2)/c2 .